Mister Exam

Other calculators

log3(x)-logx(3)<1,5 inequation

A inequation with variable

The solution

You have entered [src]
log(x)                 
------ - log(x)*3 < 3/2
log(3)                 
$$- 3 \log{\left(x \right)} + \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} < \frac{3}{2}$$
-3*log(x) + log(x)/log(3) < 3/2
Detail solution
Given the inequality:
$$- 3 \log{\left(x \right)} + \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} < \frac{3}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$- 3 \log{\left(x \right)} + \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} = \frac{3}{2}$$
Solve:
$$x_{1} = 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
$$x_{1} = 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
This roots
$$x_{1} = 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
=
$$- \frac{1}{10} + 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
substitute to the expression
$$- 3 \log{\left(x \right)} + \frac{\log{\left(x \right)}}{\log{\left(3 \right)}} < \frac{3}{2}$$
$$\frac{\log{\left(- \frac{1}{10} + 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}} \right)}}{\log{\left(3 \right)}} - 3 \log{\left(- \frac{1}{10} + 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}} \right)} < \frac{3}{2}$$
                                       /               3        \      
                                       |        ----------------|      
       /               3        \      |  1     2*(1 - 3*log(3))|      
       |        ----------------|   log|- -- + 3                | < 3/2
       |  1     2*(1 - 3*log(3))|      \  10                    /      
- 3*log|- -- + 3                | + -----------------------------      
       \  10                    /               log(3)                 

but
                                       /               3        \      
                                       |        ----------------|      
       /               3        \      |  1     2*(1 - 3*log(3))|      
       |        ----------------|   log|- -- + 3                | > 3/2
       |  1     2*(1 - 3*log(3))|      \  10                    /      
- 3*log|- -- + 3                | + -----------------------------      
       \  10                    /               log(3)                 

Then
$$x < 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
no execute
the solution of our inequality is:
$$x > 3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution [src]
   /        -3                    \
   | -----------------            |
   | 2*(-1 + 3*log(3))            |
And\3                  < x, x < oo/
$$3^{- \frac{3}{2 \left(-1 + 3 \log{\left(3 \right)}\right)}} < x \wedge x < \infty$$
(x < oo)∧(3^(-3/(2*(-1 + 3*log(3)))) < x)
Rapid solution 2 [src]
         3             
  ----------------     
  2*(1 - 3*log(3))     
(3                , oo)
$$x\ in\ \left(3^{\frac{3}{2 \left(1 - 3 \log{\left(3 \right)}\right)}}, \infty\right)$$
x in Interval.open(3^(3/(2*(1 - 3*log(3)))), oo)