Mister Exam

Other calculators

log1/2(2x+1)>-2 inequation

A inequation with variable

The solution

You have entered [src]
log(1)*(2*x + 1)     
---------------- > -2
       2             
$$\frac{\left(2 x + 1\right) \log{\left(1 \right)}}{2} > -2$$
log(1)*(2*x + 1)/2 > -2
Detail solution
Given the inequality:
$$\frac{\left(2 x + 1\right) \log{\left(1 \right)}}{2} > -2$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\left(2 x + 1\right) \log{\left(1 \right)}}{2} = -2$$
Solve:
This equation has no roots,
this inequality is executed for any x value or has no solutions
check it
subtitute random point x, for example
x0 = 0

$$\frac{\left(2 \cdot 0 + 1\right) \log{\left(1 \right)}}{2} > -2$$
0 > -2

so the inequality is always executed
Rapid solution 2 [src]
(-oo, oo)
$$x\ in\ \left(-\infty, \infty\right)$$
x in Interval(-oo, oo)
Rapid solution [src]
And(-oo < x, x < oo)
$$-\infty < x \wedge x < \infty$$
(-oo < x)∧(x < oo)