Mister Exam

Other calculators

(x+19,2)/(x-5)<0 inequation

A inequation with variable

The solution

You have entered [src]
x + 96/5    
-------- < 0
 x - 5      
$$\frac{x + \frac{96}{5}}{x - 5} < 0$$
(x + 96/5)/(x - 5) < 0
Detail solution
Given the inequality:
$$\frac{x + \frac{96}{5}}{x - 5} < 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{x + \frac{96}{5}}{x - 5} = 0$$
Solve:
Given the equation:
$$\frac{x + \frac{96}{5}}{x - 5} = 0$$
Multiply the equation sides by the denominator -5 + x
we get:
$$x + \frac{96}{5} = 0$$
Move free summands (without x)
from left part to right part, we given:
$$x = - \frac{96}{5}$$
$$x_{1} = - \frac{96}{5}$$
$$x_{1} = - \frac{96}{5}$$
This roots
$$x_{1} = - \frac{96}{5}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{96}{5} + - \frac{1}{10}$$
=
$$- \frac{193}{10}$$
substitute to the expression
$$\frac{x + \frac{96}{5}}{x - 5} < 0$$
$$\frac{- \frac{193}{10} + \frac{96}{5}}{- \frac{193}{10} - 5} < 0$$
1/243 < 0

but
1/243 > 0

Then
$$x < - \frac{96}{5}$$
no execute
the solution of our inequality is:
$$x > - \frac{96}{5}$$
         _____  
        /
-------ο-------
       x1
Rapid solution [src]
And(-96/5 < x, x < 5)
$$- \frac{96}{5} < x \wedge x < 5$$
(-96/5 < x)∧(x < 5)
Rapid solution 2 [src]
(-96/5, 5)
$$x\ in\ \left(- \frac{96}{5}, 5\right)$$
x in Interval.open(-96/5, 5)