Given the inequality:
$$- 3 \left(10 - 3 x\right) + \log{\left(2 x \right)} \geq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$- 3 \left(10 - 3 x\right) + \log{\left(2 x \right)} = 0$$
Solve:
$$x_{1} = \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
$$x_{1} = \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
This roots
$$x_{1} = \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
=
$$- \frac{1}{10} + \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
substitute to the expression
$$- 3 \left(10 - 3 x\right) + \log{\left(2 x \right)} \geq 0$$
$$\log{\left(2 \left(- \frac{1}{10} + \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}\right) \right)} - 3 \left(10 - 3 \left(- \frac{1}{10} + \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}\right)\right) \geq 0$$
/ / 30\\
| |9*e ||
/ 30\ | 2*W|-----||
309 |9*e | | 1 \ 2 /| >= 0
- --- + W|-----| + log|- - + ----------|
10 \ 2 / \ 5 9 /
but
/ / 30\\
| |9*e ||
/ 30\ | 2*W|-----||
309 |9*e | | 1 \ 2 /| < 0
- --- + W|-----| + log|- - + ----------|
10 \ 2 / \ 5 9 /
Then
$$x \leq \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
no execute
the solution of our inequality is:
$$x \geq \frac{W\left(\frac{9 e^{30}}{2}\right)}{9}$$
_____
/
-------•-------
x1