Mister Exam

Other calculators


sin(x)≥-sqrt(3)/2

sin(x)≥-sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
             ___ 
          -\/ 3  
sin(x) >= -------
             2   
sin(x)(1)32\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}
sin(x) >= -sqrt(3)/2
Detail solution
Given the inequality:
sin(x)(1)32\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}
To solve this inequality, we must first solve the corresponding equation:
sin(x)=(1)32\sin{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}
Solve:
Given the equation
sin(x)=(1)32\sin{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}
- this is the simplest trigonometric equation
This equation is transformed to
x=2πn+asin(32)x = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}
x=2πnasin(32)+πx = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi
Or
x=2πnπ3x = 2 \pi n - \frac{\pi}{3}
x=2πn+4π3x = 2 \pi n + \frac{4 \pi}{3}
, where n - is a integer
x1=2πnπ3x_{1} = 2 \pi n - \frac{\pi}{3}
x2=2πn+4π3x_{2} = 2 \pi n + \frac{4 \pi}{3}
x1=2πnπ3x_{1} = 2 \pi n - \frac{\pi}{3}
x2=2πn+4π3x_{2} = 2 \pi n + \frac{4 \pi}{3}
This roots
x1=2πnπ3x_{1} = 2 \pi n - \frac{\pi}{3}
x2=2πn+4π3x_{2} = 2 \pi n + \frac{4 \pi}{3}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
(2πnπ3)110\left(2 \pi n - \frac{\pi}{3}\right) - \frac{1}{10}
=
2πnπ31102 \pi n - \frac{\pi}{3} - \frac{1}{10}
substitute to the expression
sin(x)(1)32\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}
sin(2πnπ3110)(1)32\sin{\left(2 \pi n - \frac{\pi}{3} - \frac{1}{10} \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}
                    ___ 
    /1    pi\    -\/ 3  
-sin|-- + --| >= -------
    \10   3 /       2   
                 

but
                   ___ 
    /1    pi\   -\/ 3  
-sin|-- + --| < -------
    \10   3 /      2   
                

Then
x2πnπ3x \leq 2 \pi n - \frac{\pi}{3}
no execute
one of the solutions of our inequality is:
x2πnπ3x2πn+4π3x \geq 2 \pi n - \frac{\pi}{3} \wedge x \leq 2 \pi n + \frac{4 \pi}{3}
         _____  
        /     \  
-------•-------•-------
       x_1      x_2
Solving inequality on a graph
0-60-50-40-30-20-101020304050602-2
Rapid solution [src]
  /   /             4*pi\     /5*pi               \\
Or|And|0 <= x, x <= ----|, And|---- <= x, x < 2*pi||
  \   \              3  /     \ 3                 //
(0xx4π3)(5π3xx<2π)\left(0 \leq x \wedge x \leq \frac{4 \pi}{3}\right) \vee \left(\frac{5 \pi}{3} \leq x \wedge x < 2 \pi\right)
((0 <= x)∧(x <= 4*pi/3))∨((5*pi/3 <= x)∧(x < 2*pi))
Rapid solution 2 [src]
    4*pi     5*pi       
[0, ----] U [----, 2*pi)
     3        3         
x in [0,4π3][5π3,2π)x\ in\ \left[0, \frac{4 \pi}{3}\right] \cup \left[\frac{5 \pi}{3}, 2 \pi\right)
x in Union(Interval(0, 4*pi/3), Interval.Ropen(5*pi/3, 2*pi))
The graph
sin(x)≥-sqrt(3)/2 inequation