Given the inequality:
$$\frac{\log{\left(2 x - 4 \right)}}{\log{\left(2 \right)}} < \log{\left(2 \right)}^{6}$$
To solve this inequality, we must first solve the corresponding equation:
$$\frac{\log{\left(2 x - 4 \right)}}{\log{\left(2 \right)}} = \log{\left(2 \right)}^{6}$$
Solve:
Given the equation
$$\frac{\log{\left(2 x - 4 \right)}}{\log{\left(2 \right)}} = \log{\left(2 \right)}^{6}$$
$$\frac{\log{\left(2 x - 4 \right)}}{\log{\left(2 \right)}} = \log{\left(2 \right)}^{6}$$
Let's divide both parts of the equation by the multiplier of log =1/log(2)
$$\log{\left(2 x - 4 \right)} = \log{\left(2 \right)}^{7}$$
This equation is of the form:
log(v)=p
By definition log
v=e^p
then
$$2 x - 4 = e^{\frac{\log{\left(2 \right)}^{6}}{\frac{1}{\log{\left(2 \right)}}}}$$
simplify
$$2 x - 4 = e^{\log{\left(2 \right)}^{7}}$$
$$2 x = e^{\log{\left(2 \right)}^{7}} + 4$$
$$x = \frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2$$
$$x_{1} = \frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2$$
$$x_{1} = \frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2$$
This roots
$$x_{1} = \frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \left(\frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2\right)$$
=
$$\frac{e^{\log{\left(2 \right)}^{7}}}{2} + \frac{19}{10}$$
substitute to the expression
$$\frac{\log{\left(2 x - 4 \right)}}{\log{\left(2 \right)}} < \log{\left(2 \right)}^{6}$$
$$\frac{\log{\left(-4 + 2 \left(\frac{e^{\log{\left(2 \right)}^{7}}}{2} + \frac{19}{10}\right) \right)}}{\log{\left(2 \right)}} < \log{\left(2 \right)}^{6}$$
/ 7 \
| 1 log (2)|
log|- - + e | 6
\ 5 / < log (2)
-------------------
log(2)
the solution of our inequality is:
$$x < \frac{e^{\log{\left(2 \right)}^{7}}}{2} + 2$$
_____
\
-------ο-------
x1