Mister Exam

Other calculators

(√14-4)x˂30-8√14 inequation

A inequation with variable

The solution

You have entered [src]
/  ____    \              ____
\\/ 14  - 4/*x < 30 - 8*\/ 14 
$$x \left(-4 + \sqrt{14}\right) < 30 - 8 \sqrt{14}$$
x*(-4 + sqrt(14)) < 30 - 8*sqrt(14)
Detail solution
Given the inequality:
$$x \left(-4 + \sqrt{14}\right) < 30 - 8 \sqrt{14}$$
To solve this inequality, we must first solve the corresponding equation:
$$x \left(-4 + \sqrt{14}\right) = 30 - 8 \sqrt{14}$$
Solve:
Given the linear equation:
(sqrt(14)-4)*x = 30-8*sqrt(14)

Expand brackets in the left part
sqrt+14-4)*x = 30-8*sqrt(14)

Expand brackets in the right part
sqrt+14-4)*x = 30-8*sqrt14

Move free summands (without x)
from left part to right part, we given:
$$x \left(-4 + \sqrt{14}\right) + 4 = 34 - 8 \sqrt{14}$$
Divide both parts of the equation by (4 + x*(-4 + sqrt(14)))/x
x = 34 - 8*sqrt(14) / ((4 + x*(-4 + sqrt(14)))/x)

$$x_{1} = -4 + \sqrt{14}$$
$$x_{1} = -4 + \sqrt{14}$$
This roots
$$x_{1} = -4 + \sqrt{14}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(-4 + \sqrt{14}\right) + - \frac{1}{10}$$
=
$$- \frac{41}{10} + \sqrt{14}$$
substitute to the expression
$$x \left(-4 + \sqrt{14}\right) < 30 - 8 \sqrt{14}$$
$$\left(- \frac{41}{10} + \sqrt{14}\right) \left(-4 + \sqrt{14}\right) < 30 - 8 \sqrt{14}$$
/       ____\ /  41     ____\            ____
\-4 + \/ 14 /*|- -- + \/ 14 | < 30 - 8*\/ 14 
              \  10         /   

but
/       ____\ /  41     ____\            ____
\-4 + \/ 14 /*|- -- + \/ 14 | > 30 - 8*\/ 14 
              \  10         /   

Then
$$x < -4 + \sqrt{14}$$
no execute
the solution of our inequality is:
$$x > -4 + \sqrt{14}$$
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
Rapid solution 2 [src]
    /         ____\     
 -2*\15 - 4*\/ 14 /     
(------------------, oo)
           ____         
     4 - \/ 14          
$$x\ in\ \left(- \frac{2 \left(15 - 4 \sqrt{14}\right)}{4 - \sqrt{14}}, \infty\right)$$
x in Interval.open(-2*(15 - 4*sqrt(14))/(4 - sqrt(14)), oo)
Rapid solution [src]
   /           /         ____\    \
   |        -2*\15 - 4*\/ 14 /    |
And|x < oo, ------------------ < x|
   |                  ____        |
   \            4 - \/ 14         /
$$x < \infty \wedge - \frac{2 \left(15 - 4 \sqrt{14}\right)}{4 - \sqrt{14}} < x$$
(x < oo)∧(-2*(15 - 4*sqrt(14))/(4 - sqrt(14)) < x)