Given the inequality:
$$\left(\frac{1}{2}\right)^{2 x + 1} < 4$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(\frac{1}{2}\right)^{2 x + 1} = 4$$
Solve:
Given the equation:
$$\left(\frac{1}{2}\right)^{2 x + 1} = 4$$
or
$$\left(\frac{1}{2}\right)^{2 x + 1} - 4 = 0$$
or
$$\frac{4^{- x}}{2} = 4$$
or
$$\left(\frac{1}{4}\right)^{x} = 8$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{4}\right)^{x}$$
we get
$$v - 8 = 0$$
or
$$v - 8 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 8$$
do backward replacement
$$\left(\frac{1}{4}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(4 \right)}}$$
$$x_{1} = 8$$
$$x_{1} = 8$$
This roots
$$x_{1} = 8$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + 8$$
=
$$\frac{79}{10}$$
substitute to the expression
$$\left(\frac{1}{2}\right)^{2 x + 1} < 4$$
$$\left(\frac{1}{2}\right)^{1 + \frac{2 \cdot 79}{10}} < 4$$
5 ___
\/ 2
------ < 4
131072
the solution of our inequality is:
$$x < 8$$
_____
\
-------ο-------
x1