Mister Exam

Other calculators

(1/2)^(2x+1)<4 inequation

A inequation with variable

The solution

You have entered [src]
 -1 - 2*x    
2         < 4
(12)2x+1<4\left(\frac{1}{2}\right)^{2 x + 1} < 4
(1/2)^(2*x + 1) < 4
Detail solution
Given the inequality:
(12)2x+1<4\left(\frac{1}{2}\right)^{2 x + 1} < 4
To solve this inequality, we must first solve the corresponding equation:
(12)2x+1=4\left(\frac{1}{2}\right)^{2 x + 1} = 4
Solve:
Given the equation:
(12)2x+1=4\left(\frac{1}{2}\right)^{2 x + 1} = 4
or
(12)2x+14=0\left(\frac{1}{2}\right)^{2 x + 1} - 4 = 0
or
4x2=4\frac{4^{- x}}{2} = 4
or
(14)x=8\left(\frac{1}{4}\right)^{x} = 8
- this is the simplest exponential equation
Do replacement
v=(14)xv = \left(\frac{1}{4}\right)^{x}
we get
v8=0v - 8 = 0
or
v8=0v - 8 = 0
Move free summands (without v)
from left part to right part, we given:
v=8v = 8
do backward replacement
(14)x=v\left(\frac{1}{4}\right)^{x} = v
or
x=log(v)log(4)x = - \frac{\log{\left(v \right)}}{\log{\left(4 \right)}}
x1=8x_{1} = 8
x1=8x_{1} = 8
This roots
x1=8x_{1} = 8
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+8- \frac{1}{10} + 8
=
7910\frac{79}{10}
substitute to the expression
(12)2x+1<4\left(\frac{1}{2}\right)^{2 x + 1} < 4
(12)1+27910<4\left(\frac{1}{2}\right)^{1 + \frac{2 \cdot 79}{10}} < 4
5 ___     
\/ 2      
------ < 4
131072    
    

the solution of our inequality is:
x<8x < 8
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.00100
Rapid solution [src]
  1    log(4)     
- - - -------- < x
  2   2*log(2)    
log(4)2log(2)12<x- \frac{\log{\left(4 \right)}}{2 \log{\left(2 \right)}} - \frac{1}{2} < x
-log(4)/(2*log(2)) - 1/2 < x
Rapid solution 2 [src]
   1    log(4)      
(- - - --------, oo)
   2   2*log(2)     
x in (log(4)2log(2)12,)x\ in\ \left(- \frac{\log{\left(4 \right)}}{2 \log{\left(2 \right)}} - \frac{1}{2}, \infty\right)
x in Interval.open(-log(4)/(2*log(2)) - 1/2, oo)