Mister Exam

Other calculators

ctg(x)>-1 inequation

A inequation with variable

The solution

You have entered [src]
cot(x) > -1
cot(x)>1\cot{\left(x \right)} > -1
cot(x) > -1
Detail solution
Given the inequality:
cot(x)>1\cot{\left(x \right)} > -1
To solve this inequality, we must first solve the corresponding equation:
cot(x)=1\cot{\left(x \right)} = -1
Solve:
Given the equation
cot(x)=1\cot{\left(x \right)} = -1
transform
cot(x)+1=0\cot{\left(x \right)} + 1 = 0
cot(x)+1=0\cot{\left(x \right)} + 1 = 0
Do replacement
w=cot(x)w = \cot{\left(x \right)}
Move free summands (without w)
from left part to right part, we given:
w=1w = -1
We get the answer: w = -1
do backward replacement
cot(x)=w\cot{\left(x \right)} = w
substitute w:
x1=π4x_{1} = - \frac{\pi}{4}
x1=π4x_{1} = - \frac{\pi}{4}
This roots
x1=π4x_{1} = - \frac{\pi}{4}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
π4110- \frac{\pi}{4} - \frac{1}{10}
=
π4110- \frac{\pi}{4} - \frac{1}{10}
substitute to the expression
cot(x)>1\cot{\left(x \right)} > -1
cot(π4110)>1\cot{\left(- \frac{\pi}{4} - \frac{1}{10} \right)} > -1
    /1    pi\     
-cot|-- + --| > -1
    \10   4 /     

the solution of our inequality is:
x<π4x < - \frac{\pi}{4}
 _____          
      \    
-------ο-------
       x1
Rapid solution [src]
   /           3*pi\
And|0 < x, x < ----|
   \            4  /
0<xx<3π40 < x \wedge x < \frac{3 \pi}{4}
(0 < x)∧(x < 3*pi/4)
Rapid solution 2 [src]
    3*pi 
(0, ----)
     4   
x in (0,3π4)x\ in\ \left(0, \frac{3 \pi}{4}\right)
x in Interval.open(0, 3*pi/4)