Mister Exam

Other calculators

3x²+2x-5<=0 inequation

A inequation with variable

The solution

You have entered [src]
   2               
3*x  + 2*x - 5 <= 0
$$\left(3 x^{2} + 2 x\right) - 5 \leq 0$$
3*x^2 + 2*x - 5 <= 0
Detail solution
Given the inequality:
$$\left(3 x^{2} + 2 x\right) - 5 \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\left(3 x^{2} + 2 x\right) - 5 = 0$$
Solve:
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 3$$
$$b = 2$$
$$c = -5$$
, then
D = b^2 - 4 * a * c = 

(2)^2 - 4 * (3) * (-5) = 64

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 1$$
$$x_{2} = - \frac{5}{3}$$
$$x_{1} = 1$$
$$x_{2} = - \frac{5}{3}$$
$$x_{1} = 1$$
$$x_{2} = - \frac{5}{3}$$
This roots
$$x_{2} = - \frac{5}{3}$$
$$x_{1} = 1$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \frac{5}{3} + - \frac{1}{10}$$
=
$$- \frac{53}{30}$$
substitute to the expression
$$\left(3 x^{2} + 2 x\right) - 5 \leq 0$$
$$-5 + \left(\frac{\left(-53\right) 2}{30} + 3 \left(- \frac{53}{30}\right)^{2}\right) \leq 0$$
 83     
--- <= 0
100     

but
 83     
--- >= 0
100     

Then
$$x \leq - \frac{5}{3}$$
no execute
one of the solutions of our inequality is:
$$x \geq - \frac{5}{3} \wedge x \leq 1$$
         _____  
        /     \  
-------•-------•-------
       x2      x1
Solving inequality on a graph
Rapid solution [src]
And(-5/3 <= x, x <= 1)
$$- \frac{5}{3} \leq x \wedge x \leq 1$$
(-5/3 <= x)∧(x <= 1)
Rapid solution 2 [src]
[-5/3, 1]
$$x\ in\ \left[- \frac{5}{3}, 1\right]$$
x in Interval(-5/3, 1)