Mister Exam

Other calculators

ctg(2x+pi)≥-sqrt(3) inequation

A inequation with variable

The solution

You have entered [src]
                    ___
cot(2*x + pi) >= -\/ 3 
$$\cot{\left(2 x + \pi \right)} \geq - \sqrt{3}$$
cot(2*x + pi) >= -sqrt(3)
Detail solution
Given the inequality:
$$\cot{\left(2 x + \pi \right)} \geq - \sqrt{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(2 x + \pi \right)} = - \sqrt{3}$$
Solve:
Given the equation
$$\cot{\left(2 x + \pi \right)} = - \sqrt{3}$$
transform
$$\cot{\left(2 x \right)} + \sqrt{3} = 0$$
$$\cot{\left(2 x \right)} + \sqrt{3} = 0$$
Do replacement
$$w = \cot{\left(2 x \right)}$$
Expand brackets in the left part
w + sqrt3 = 0

Divide both parts of the equation by (w + sqrt(3))/w
w = 0 / ((w + sqrt(3))/w)

We get the answer: w = -sqrt(3)
do backward replacement
$$\cot{\left(2 x \right)} = w$$
substitute w:
$$x_{1} = - \frac{\pi}{12}$$
$$x_{1} = - \frac{\pi}{12}$$
This roots
$$x_{1} = - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(2 x + \pi \right)} \geq - \sqrt{3}$$
$$\cot{\left(2 \left(- \frac{\pi}{12} - \frac{1}{10}\right) + \pi \right)} \geq - \sqrt{3}$$
    /1   pi\       ___
-cot|- + --| >= -\/ 3 
    \5   6 /    

the solution of our inequality is:
$$x \leq - \frac{\pi}{12}$$
 _____          
      \    
-------•-------
       x1
Rapid solution 2 [src]
         /  ___     ___\ 
         |\/ 2  + \/ 6 | 
(0, -atan|-------------|]
         |  ___     ___| 
         \\/ 2  - \/ 6 / 
$$x\ in\ \left(0, - \operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)}\right]$$
x in Interval.Lopen(0, -atan((sqrt(2) + sqrt(6))/(-sqrt(6) + sqrt(2))))
Rapid solution [src]
   /          /  ___     ___\       \
   |          |\/ 2  + \/ 6 |       |
And|x <= -atan|-------------|, 0 < x|
   |          |  ___     ___|       |
   \          \\/ 2  - \/ 6 /       /
$$x \leq - \operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)} \wedge 0 < x$$
(0 < x)∧(x <= -atan((sqrt(2) + sqrt(6))/(sqrt(2) - sqrt(6))))