Given the inequality:
$$\cot{\left(2 x + \pi \right)} \geq - \sqrt{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(2 x + \pi \right)} = - \sqrt{3}$$
Solve:
Given the equation
$$\cot{\left(2 x + \pi \right)} = - \sqrt{3}$$
transform
$$\cot{\left(2 x \right)} + \sqrt{3} = 0$$
$$\cot{\left(2 x \right)} + \sqrt{3} = 0$$
Do replacement
$$w = \cot{\left(2 x \right)}$$
Expand brackets in the left part
w + sqrt3 = 0
Divide both parts of the equation by (w + sqrt(3))/w
w = 0 / ((w + sqrt(3))/w)
We get the answer: w = -sqrt(3)
do backward replacement
$$\cot{\left(2 x \right)} = w$$
substitute w:
$$x_{1} = - \frac{\pi}{12}$$
$$x_{1} = - \frac{\pi}{12}$$
This roots
$$x_{1} = - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
=
$$- \frac{\pi}{12} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(2 x + \pi \right)} \geq - \sqrt{3}$$
$$\cot{\left(2 \left(- \frac{\pi}{12} - \frac{1}{10}\right) + \pi \right)} \geq - \sqrt{3}$$
/1 pi\ ___
-cot|- + --| >= -\/ 3
\5 6 / the solution of our inequality is:
$$x \leq - \frac{\pi}{12}$$
_____
\
-------•-------
x1