Mister Exam

Other calculators


cos(x)>=0,2

cos(x)>=0,2 inequation

A inequation with variable

The solution

You have entered [src]
cos(x) >= 1/5
$$\cos{\left(x \right)} \geq \frac{1}{5}$$
cos(x) >= 1/5
Detail solution
Given the inequality:
$$\cos{\left(x \right)} \geq \frac{1}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{1}{5}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{1}{5}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
Or
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
This roots
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
substitute to the expression
$$\cos{\left(x \right)} \geq \frac{1}{5}$$
$$\cos{\left(2 \pi n - \frac{1}{10} + \operatorname{acos}{\left(\frac{1}{5} \right)} \right)} \geq \frac{1}{5}$$
cos(1/10 - acos(1/5)) >= 1/5

one of the solutions of our inequality is:
$$x \leq 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
 _____           _____          
      \         /
-------•-------•-------
       x_1      x_2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x \geq 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
Solving inequality on a graph
Rapid solution [src]
  /   /                 /    ___\\     /      /    ___\                      \\
Or\And\0 <= x, x <= atan\2*\/ 6 //, And\- atan\2*\/ 6 / + 2*pi <= x, x < 2*pi//
$$\left(0 \leq x \wedge x \leq \operatorname{atan}{\left(2 \sqrt{6} \right)}\right) \vee \left(- \operatorname{atan}{\left(2 \sqrt{6} \right)} + 2 \pi \leq x \wedge x < 2 \pi\right)$$
((0 <= x)∧(x <= atan(2*sqrt(6))))∨((x < 2*pi)∧(-atan(2*sqrt(6)) + 2*pi <= x))
Rapid solution 2 [src]
        /    ___\           /    ___\              
[0, atan\2*\/ 6 /] U [- atan\2*\/ 6 / + 2*pi, 2*pi)
$$x\ in\ \left[0, \operatorname{atan}{\left(2 \sqrt{6} \right)}\right] \cup \left[- \operatorname{atan}{\left(2 \sqrt{6} \right)} + 2 \pi, 2 \pi\right)$$
x in Union(Interval(0, atan(2*sqrt(6))), Interval.Ropen(-atan(2*sqrt(6)) + 2*pi, 2*pi))
The graph
cos(x)>=0,2 inequation