Given the inequality:
$$\cos{\left(x \right)} \geq \frac{1}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{1}{5}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{1}{5}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
Or
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
This roots
$$x_{1} = 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x_{2} = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
substitute to the expression
$$\cos{\left(x \right)} \geq \frac{1}{5}$$
$$\cos{\left(2 \pi n - \frac{1}{10} + \operatorname{acos}{\left(\frac{1}{5} \right)} \right)} \geq \frac{1}{5}$$
cos(1/10 - acos(1/5)) >= 1/5
one of the solutions of our inequality is:
$$x \leq 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
_____ _____
\ /
-------•-------•-------
x_1 x_2
Other solutions will get with the changeover to the next point
etc.
The answer:
$$x \leq 2 \pi n + \operatorname{acos}{\left(\frac{1}{5} \right)}$$
$$x \geq 2 \pi n - \pi + \operatorname{acos}{\left(\frac{1}{5} \right)}$$