Mister Exam

Other calculators


cos(x)>-sqrt2/2

cos(x)>-sqrt2/2 inequation

A inequation with variable

The solution

You have entered [src]
            ___ 
         -\/ 2  
cos(x) > -------
            2   
$$\cos{\left(x \right)} > \frac{\left(-1\right) \sqrt{2}}{2}$$
cos(x) > -sqrt(2)/2
Detail solution
Given the inequality:
$$\cos{\left(x \right)} > \frac{\left(-1\right) \sqrt{2}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{\left(-1\right) \sqrt{2}}{2}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{\left(-1\right) \sqrt{2}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(- \frac{\sqrt{2}}{2} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(- \frac{\sqrt{2}}{2} \right)}$$
Or
$$x = \pi n + \frac{3 \pi}{4}$$
$$x = \pi n - \frac{\pi}{4}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{3 \pi}{4}$$
$$x_{2} = \pi n - \frac{\pi}{4}$$
$$x_{1} = \pi n + \frac{3 \pi}{4}$$
$$x_{2} = \pi n - \frac{\pi}{4}$$
This roots
$$x_{1} = \pi n + \frac{3 \pi}{4}$$
$$x_{2} = \pi n - \frac{\pi}{4}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{3 \pi}{4}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{3 \pi}{4}$$
substitute to the expression
$$\cos{\left(x \right)} > \frac{\left(-1\right) \sqrt{2}}{2}$$
$$\cos{\left(\pi n - \frac{1}{10} + \frac{3 \pi}{4} \right)} > \frac{\left(-1\right) \sqrt{2}}{2}$$
                         ___ 
     n    /1    pi\   -\/ 2  
-(-1) *cos|-- + --| > -------
          \10   4 /      2   
                      

one of the solutions of our inequality is:
$$x < \pi n + \frac{3 \pi}{4}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x_1      x_2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \pi n + \frac{3 \pi}{4}$$
$$x > \pi n - \frac{\pi}{4}$$
Solving inequality on a graph
Rapid solution [src]
  /   /            3*pi\     /5*pi              \\
Or|And|0 <= x, x < ----|, And|---- < x, x < 2*pi||
  \   \             4  /     \ 4                //
$$\left(0 \leq x \wedge x < \frac{3 \pi}{4}\right) \vee \left(\frac{5 \pi}{4} < x \wedge x < 2 \pi\right)$$
((0 <= x)∧(x < 3*pi/4))∨((5*pi/4 < x)∧(x < 2*pi))
Rapid solution 2 [src]
    3*pi     5*pi       
[0, ----) U (----, 2*pi)
     4        4         
$$x\ in\ \left[0, \frac{3 \pi}{4}\right) \cup \left(\frac{5 \pi}{4}, 2 \pi\right)$$
x in Union(Interval.Ropen(0, 3*pi/4), Interval.open(5*pi/4, 2*pi))
The graph
cos(x)>-sqrt2/2 inequation