Mister Exam

Other calculators

cos(2*x)>-(√3)/2 inequation

A inequation with variable

The solution

You have entered [src]
              ___ 
           -\/ 3  
cos(2*x) > -------
              2   
$$\cos{\left(2 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
cos(2*x) > (-sqrt(3))/2
Detail solution
Given the inequality:
$$\cos{\left(2 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(2 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(2 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 x = \pi n + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$2 x = \pi n - \pi + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
Or
$$2 x = \pi n + \frac{5 \pi}{6}$$
$$2 x = \pi n - \frac{\pi}{6}$$
, where n - is a integer
Divide both parts of the equation by
$$2$$
$$x_{1} = \frac{\pi n}{2} + \frac{5 \pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{\pi}{12}$$
$$x_{1} = \frac{\pi n}{2} + \frac{5 \pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{\pi}{12}$$
This roots
$$x_{1} = \frac{\pi n}{2} + \frac{5 \pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{\pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{2} + \frac{5 \pi}{12}\right) + - \frac{1}{10}$$
=
$$\frac{\pi n}{2} - \frac{1}{10} + \frac{5 \pi}{12}$$
substitute to the expression
$$\cos{\left(2 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\cos{\left(2 \left(\frac{\pi n}{2} - \frac{1}{10} + \frac{5 \pi}{12}\right) \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
                           ___ 
    /  1   pi       \   -\/ 3  
-sin|- - + -- + pi*n| > -------
    \  5   3        /      2   
                        

one of the solutions of our inequality is:
$$x < \frac{\pi n}{2} + \frac{5 \pi}{12}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x1      x2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < \frac{\pi n}{2} + \frac{5 \pi}{12}$$
$$x > \frac{\pi n}{2} - \frac{\pi}{12}$$
Solving inequality on a graph
Rapid solution [src]
  /   /                 /  ___     ___\\     /                  /  ___     ___\    \\
  |   |                 |\/ 2  + \/ 6 ||     |                  |\/ 2  + \/ 6 |    ||
Or|And|0 <= x, x < -atan|-------------||, And|x <= pi, pi + atan|-------------| < x||
  |   |                 |  ___     ___||     |                  |  ___     ___|    ||
  \   \                 \\/ 2  - \/ 6 //     \                  \\/ 2  - \/ 6 /    //
$$\left(0 \leq x \wedge x < - \operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)}\right) \vee \left(x \leq \pi \wedge \operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)} + \pi < x\right)$$
((0 <= x)∧(x < -atan((sqrt(2) + sqrt(6))/(sqrt(2) - sqrt(6)))))∨((x <= pi)∧(pi + atan((sqrt(2) + sqrt(6))/(sqrt(2) - sqrt(6))) < x))
Rapid solution 2 [src]
         /  ___     ___\              /  ___     ___\     
         |\/ 2  + \/ 6 |              |\/ 2  + \/ 6 |     
[0, -atan|-------------|) U (pi + atan|-------------|, pi]
         |  ___     ___|              |  ___     ___|     
         \\/ 2  - \/ 6 /              \\/ 2  - \/ 6 /     
$$x\ in\ \left[0, - \operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)}\right) \cup \left(\operatorname{atan}{\left(\frac{\sqrt{2} + \sqrt{6}}{- \sqrt{6} + \sqrt{2}} \right)} + \pi, \pi\right]$$
x in Union(Interval.Ropen(0, -atan((sqrt(2) + sqrt(6))/(-sqrt(6) + sqrt(2)))), Interval.Lopen(atan((sqrt(2) + sqrt(6))/(-sqrt(6) + sqrt(2))) + pi, pi))