Mister Exam

Other calculators

cosx≤-√3/2 inequation

A inequation with variable

The solution

You have entered [src]
             ___ 
          -\/ 3  
cos(x) <= -------
             2   
$$\cos{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{2}$$
cos(x) <= (-sqrt(3))/2
Detail solution
Given the inequality:
$$\cos{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(- \frac{\sqrt{3}}{2} \right)}$$
Or
$$x = \pi n + \frac{5 \pi}{6}$$
$$x = \pi n - \frac{\pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{5 \pi}{6}$$
$$x_{2} = \pi n - \frac{\pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{5 \pi}{6}\right) + - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{5 \pi}{6}$$
substitute to the expression
$$\cos{\left(x \right)} \leq \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\cos{\left(\pi n - \frac{1}{10} + \frac{5 \pi}{6} \right)} \leq \frac{\left(-1\right) \sqrt{3}}{2}$$
                             ___ 
    /  1    pi       \    -\/ 3  
-sin|- -- + -- + pi*n| <= -------
    \  10   3        /       2   
                          

but
                             ___ 
    /  1    pi       \    -\/ 3  
-sin|- -- + -- + pi*n| >= -------
    \  10   3        /       2   
                          

Then
$$x \leq \pi n + \frac{5 \pi}{6}$$
no execute
one of the solutions of our inequality is:
$$x \geq \pi n + \frac{5 \pi}{6} \wedge x \leq \pi n - \frac{\pi}{6}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution 2 [src]
 5*pi  7*pi 
[----, ----]
  6     6   
$$x\ in\ \left[\frac{5 \pi}{6}, \frac{7 \pi}{6}\right]$$
x in Interval(5*pi/6, 7*pi/6)
Rapid solution [src]
   /5*pi            7*pi\
And|---- <= x, x <= ----|
   \ 6               6  /
$$\frac{5 \pi}{6} \leq x \wedge x \leq \frac{7 \pi}{6}$$
(5*pi/6 <= x)∧(x <= 7*pi/6)