/ / / ___\\ / / ___\ \\
Or\And\0 <= t, t < pi - atan\4*\/ 3 //, And\t <= 2*pi, pi + atan\4*\/ 3 / < t//
$$\left(0 \leq t \wedge t < \pi - \operatorname{atan}{\left(4 \sqrt{3} \right)}\right) \vee \left(t \leq 2 \pi \wedge \operatorname{atan}{\left(4 \sqrt{3} \right)} + \pi < t\right)$$
((0 <= t)∧(t < pi - atan(4*sqrt(3))))∨((t <= 2*pi)∧(pi + atan(4*sqrt(3)) < t))
/ ___\ / ___\
[0, pi - atan\4*\/ 3 /) U (pi + atan\4*\/ 3 /, 2*pi]
$$x\ in\ \left[0, \pi - \operatorname{atan}{\left(4 \sqrt{3} \right)}\right) \cup \left(\operatorname{atan}{\left(4 \sqrt{3} \right)} + \pi, 2 \pi\right]$$
x in Union(Interval.Ropen(0, pi - atan(4*sqrt(3))), Interval.Lopen(atan(4*sqrt(3)) + pi, 2*pi))