Given the inequality: 4sin2(x)+8sin(x)+3≤0 To solve this inequality, we must first solve the corresponding equation: 4sin2(x)+8sin(x)+3=0 Solve: Given the equation 4sin2(x)+8sin(x)+3=0 transform 4sin2(x)+8sin(x)+3=0 (4sin2(x)+8sin(x)+3)+0=0 Do replacement w=sin(x) This equation is of the form
a*w^2 + b*w + c = 0
A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: w1=2aD−b w2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=4 b=8 c=3 , then
D = b^2 - 4 * a * c =
(8)^2 - 4 * (4) * (3) = 16
Because D > 0, then the equation has two roots.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)
or w1=−21 Simplify w2=−23 Simplify do backward replacement sin(x)=w Given the equation sin(x)=w - this is the simplest trigonometric equation This equation is transformed to x=2πn+asin(w) x=2πn−asin(w)+π Or x=2πn+asin(w) x=2πn−asin(w)+π , where n - is a integer substitute w: x1=2πn+asin(w1) x1=2πn+asin(−21) x1=2πn−6π x2=2πn+asin(w2) x2=2πn+asin(−23) x2=2πn−asin(23) x3=2πn−asin(w1)+π x3=2πn−asin(−21)+π x3=2πn+67π x4=2πn−asin(w2)+π x4=2πn+π−asin(−23) x4=2πn+π+asin(23) x1=−6π x2=67π x3=π+asin(23) x4=−asin(23) Exclude the complex solutions: x1=−6π x2=67π This roots x1=−6π x2=67π is the points with change the sign of the inequality expression. First define with the sign to the leftmost point: x0≤x1 For example, let's take the point x0=x1−101 = −6π−101 = −6π−101 substitute to the expression 4sin2(x)+8sin(x)+3≤0 8sin(−6π−101)+4sin2(−6π−101)+3≤0