Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\left(2 x - 1\right) \cos{\left(x \right)}}{2} + \sin{\left(x \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 95.829065529839$$
$$x_{2} = 102.1116023198$$
$$x_{3} = 61.2775087154266$$
$$x_{4} = 89.5466202277414$$
$$x_{5} = 33.0174658775265$$
$$x_{6} = 4.93419822854993$$
$$x_{7} = 86.4054381545562$$
$$x_{8} = -20.4680078422429$$
$$x_{9} = -58.1365166573738$$
$$x_{10} = -98.9702215094204$$
$$x_{11} = 14.2099775813926$$
$$x_{12} = 51.8557483406994$$
$$x_{13} = -83.2641430354848$$
$$x_{14} = 36.1563536592178$$
$$x_{15} = 17.3380791158534$$
$$x_{16} = 70.700078740623$$
$$x_{17} = -86.4053042434102$$
$$x_{18} = 7.98676475119172$$
$$x_{19} = 20.4703846071522$$
$$x_{20} = 92.6878302742345$$
$$x_{21} = -14.2050661771509$$
$$x_{22} = -80.123015436615$$
$$x_{23} = -67.5589341430727$$
$$x_{24} = 80.1231711644351$$
$$x_{25} = -23.6034090301611$$
$$x_{26} = -95.8289566560771$$
$$x_{27} = -42.4347877496486$$
$$x_{28} = 64.4182930958041$$
$$x_{29} = 0.247412484885142$$
$$x_{30} = 98.9703235828905$$
$$x_{31} = -4.89564432915531$$
$$x_{32} = 58.1368123734526$$
$$x_{33} = 45.5752749499286$$
$$x_{34} = 83.2642872382528$$
$$x_{35} = -73.8408780976001$$
$$x_{36} = -7.97148100902349$$
$$x_{37} = -51.8553766970605$$
$$x_{38} = -26.7402314854239$$
$$x_{39} = -76.9819255322054$$
$$x_{40} = -33.0165500205799$$
$$x_{41} = 54.9962192754584$$
$$x_{42} = -64.4180522161792$$
$$x_{43} = -48.7150023424838$$
$$x_{44} = -54.9958888407247$$
$$x_{45} = 11.0897262388501$$
$$x_{46} = 26.7416265193495$$
$$x_{47} = 42.4353425392198$$
$$x_{48} = -92.6877138973701$$
$$x_{49} = 48.715423408888$$
$$x_{50} = 23.6051982121417$$
$$x_{51} = 29.8791548121049$$
$$x_{52} = -61.2772425220152$$
$$x_{53} = 240.336007491163$$
$$x_{54} = 67.5591531543674$$
$$x_{55} = -45.5747939110765$$
$$x_{56} = -11.0817037582484$$
$$x_{57} = -36.1555897201517$$
$$x_{58} = -89.5464955446878$$
$$x_{59} = 76.9820942237331$$
$$x_{60} = -70.699878750109$$
$$x_{61} = -17.3347711916489$$
$$x_{62} = 2.12300090681457$$
$$x_{63} = 39.2956785303244$$
$$x_{64} = -1.95728275422062$$
$$x_{65} = -39.2950316476879$$
$$x_{66} = -29.8780368458978$$
$$x_{67} = 73.8410614412353$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[98.9703235828905, \infty\right)$$
Convex at the intervals
$$\left(-\infty, -98.9702215094204\right]$$