Mister Exam

Graphing y = y*cos(y)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(y) = y*cos(y)
f(y)=ycos(y)f{\left(y \right)} = y \cos{\left(y \right)}
f = y*cos(y)
The graph of the function
02468-8-6-4-2-1010-2020
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis Y at f = 0
so we need to solve the equation:
ycos(y)=0y \cos{\left(y \right)} = 0
Solve this equation
The points of intersection with the axis Y:

Analytical solution
y1=0y_{1} = 0
y2=π2y_{2} = - \frac{\pi}{2}
y3=π2y_{3} = \frac{\pi}{2}
Numerical solution
y1=7.85398163397448y_{1} = 7.85398163397448
y2=73.8274273593601y_{2} = -73.8274273593601
y3=54.9778714378214y_{3} = -54.9778714378214
y4=73.8274273593601y_{4} = 73.8274273593601
y5=0y_{5} = 0
y6=26.7035375555132y_{6} = -26.7035375555132
y7=1.5707963267949y_{7} = -1.5707963267949
y8=95.8185759344887y_{8} = -95.8185759344887
y9=39.2699081698724y_{9} = -39.2699081698724
y10=4.71238898038469y_{10} = -4.71238898038469
y11=14.1371669411541y_{11} = 14.1371669411541
y12=10.9955742875643y_{12} = 10.9955742875643
y13=58.1194640914112y_{13} = 58.1194640914112
y14=70.6858347057703y_{14} = 70.6858347057703
y15=36.1283155162826y_{15} = -36.1283155162826
y16=54.9778714378214y_{16} = 54.9778714378214
y17=23.5619449019235y_{17} = 23.5619449019235
y18=92.6769832808989y_{18} = -92.6769832808989
y19=86.3937979737193y_{19} = -86.3937979737193
y20=10.9955742875643y_{20} = -10.9955742875643
y21=92.6769832808989y_{21} = 92.6769832808989
y22=39.2699081698724y_{22} = 39.2699081698724
y23=32.9867228626928y_{23} = -32.9867228626928
y24=98.9601685880785y_{24} = 98.9601685880785
y25=36.1283155162826y_{25} = 36.1283155162826
y26=7.85398163397448y_{26} = -7.85398163397448
y27=58.1194640914112y_{27} = -58.1194640914112
y28=67.5442420521806y_{28} = -67.5442420521806
y29=61.261056745001y_{29} = -61.261056745001
y30=26.7035375555132y_{30} = 26.7035375555132
y31=86.3937979737193y_{31} = 86.3937979737193
y32=48.6946861306418y_{32} = -48.6946861306418
y33=51.8362787842316y_{33} = 51.8362787842316
y34=42.4115008234622y_{34} = -42.4115008234622
y35=89.5353906273091y_{35} = -89.5353906273091
y36=98.9601685880785y_{36} = -98.9601685880785
y37=14.1371669411541y_{37} = -14.1371669411541
y38=80.1106126665397y_{38} = 80.1106126665397
y39=64.4026493985908y_{39} = -64.4026493985908
y40=95.8185759344887y_{40} = 95.8185759344887
y41=114.668131856027y_{41} = -114.668131856027
y42=1.5707963267949y_{42} = 1.5707963267949
y43=45.553093477052y_{43} = 45.553093477052
y44=17.2787595947439y_{44} = -17.2787595947439
y45=4.71238898038469y_{45} = 4.71238898038469
y46=48.6946861306418y_{46} = 48.6946861306418
y47=76.9690200129499y_{47} = 76.9690200129499
y48=45.553093477052y_{48} = -45.553093477052
y49=20.4203522483337y_{49} = 20.4203522483337
y50=17.2787595947439y_{50} = 17.2787595947439
y51=83.2522053201295y_{51} = -83.2522053201295
y52=20.4203522483337y_{52} = -20.4203522483337
y53=80.1106126665397y_{53} = -80.1106126665397
y54=61.261056745001y_{54} = 61.261056745001
y55=32.9867228626928y_{55} = 32.9867228626928
y56=64.4026493985908y_{56} = 64.4026493985908
y57=23.5619449019235y_{57} = -23.5619449019235
y58=29.845130209103y_{58} = 29.845130209103
y59=42.4115008234622y_{59} = 42.4115008234622
y60=89.5353906273091y_{60} = 89.5353906273091
y61=51.8362787842316y_{61} = -51.8362787842316
y62=70.6858347057703y_{62} = -70.6858347057703
y63=83.2522053201295y_{63} = 83.2522053201295
y64=67.5442420521806y_{64} = 67.5442420521806
y65=29.845130209103y_{65} = -29.845130209103
y66=76.9690200129499y_{66} = -76.9690200129499
y67=114.668131856027y_{67} = 114.668131856027
The points of intersection with the Y axis coordinate
The graph crosses Y axis when y equals 0:
substitute y = 0 to y*cos(y).
0cos(0)0 \cos{\left(0 \right)}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddyf(y)=0\frac{d}{d y} f{\left(y \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddyf(y)=\frac{d}{d y} f{\left(y \right)} =
the first derivative
ysin(y)+cos(y)=0- y \sin{\left(y \right)} + \cos{\left(y \right)} = 0
Solve this equation
The roots of this equation
y1=12.6452872238566y_{1} = -12.6452872238566
y2=72.270467060309y_{2} = -72.270467060309
y3=72.270467060309y_{3} = 72.270467060309
y4=84.8347887180423y_{4} = -84.8347887180423
y5=9.52933440536196y_{5} = 9.52933440536196
y6=78.5525459842429y_{6} = 78.5525459842429
y7=6.43729817917195y_{7} = -6.43729817917195
y8=37.7256128277765y_{8} = 37.7256128277765
y9=18.90240995686y_{9} = -18.90240995686
y10=56.5663442798215y_{10} = -56.5663442798215
y11=37.7256128277765y_{11} = -37.7256128277765
y12=22.0364967279386y_{12} = 22.0364967279386
y13=69.1295029738953y_{13} = -69.1295029738953
y14=28.309642854452y_{14} = -28.309642854452
y15=47.145097736761y_{15} = 47.145097736761
y16=97.3996388790738y_{16} = -97.3996388790738
y17=25.1724463266467y_{17} = -25.1724463266467
y18=59.7070073053355y_{18} = -59.7070073053355
y19=9.52933440536196y_{19} = -9.52933440536196
y20=6.43729817917195y_{20} = 6.43729817917195
y21=53.4257904773947y_{21} = -53.4257904773947
y22=28.309642854452y_{22} = 28.309642854452
y23=91.1171613944647y_{23} = 91.1171613944647
y24=25.1724463266467y_{24} = 25.1724463266467
y25=15.7712848748159y_{25} = -15.7712848748159
y26=100.540910786842y_{26} = -100.540910786842
y27=44.0050179208308y_{27} = 44.0050179208308
y28=65.9885986984904y_{28} = -65.9885986984904
y29=81.6936492356017y_{29} = 81.6936492356017
y30=116.247530303932y_{30} = -116.247530303932
y31=91.1171613944647y_{31} = -91.1171613944647
y32=47.145097736761y_{32} = -47.145097736761
y33=147.661626855354y_{33} = -147.661626855354
y34=3.42561845948173y_{34} = -3.42561845948173
y35=50.2853663377737y_{35} = -50.2853663377737
y36=94.2583883450399y_{36} = -94.2583883450399
y37=97.3996388790738y_{37} = 97.3996388790738
y38=87.9759605524932y_{38} = -87.9759605524932
y39=94.2583883450399y_{39} = 94.2583883450399
y40=75.4114834888481y_{40} = 75.4114834888481
y41=15.7712848748159y_{41} = 15.7712848748159
y42=53.4257904773947y_{42} = 53.4257904773947
y43=69.1295029738953y_{43} = 69.1295029738953
y44=87.9759605524932y_{44} = 87.9759605524932
y45=75.4114834888481y_{45} = -75.4114834888481
y46=81.6936492356017y_{46} = -81.6936492356017
y47=3.42561845948173y_{47} = 3.42561845948173
y48=62.8477631944545y_{48} = 62.8477631944545
y49=40.8651703304881y_{49} = -40.8651703304881
y50=59.7070073053355y_{50} = 59.7070073053355
y51=78.5525459842429y_{51} = -78.5525459842429
y52=40.8651703304881y_{52} = 40.8651703304881
y53=12.6452872238566y_{53} = 12.6452872238566
y54=34.5864242152889y_{54} = -34.5864242152889
y55=31.4477146375462y_{55} = -31.4477146375462
y56=34.5864242152889y_{56} = 34.5864242152889
y57=22.0364967279386y_{57} = -22.0364967279386
y58=31.4477146375462y_{58} = 31.4477146375462
y59=50.2853663377737y_{59} = 50.2853663377737
y60=56.5663442798215y_{60} = 56.5663442798215
y61=44.0050179208308y_{61} = -44.0050179208308
y62=100.540910786842y_{62} = 100.540910786842
y63=65.9885986984904y_{63} = 65.9885986984904
y64=62.8477631944545y_{64} = -62.8477631944545
y65=0.86033358901938y_{65} = 0.86033358901938
y66=18.90240995686y_{66} = 18.90240995686
y67=84.8347887180423y_{67} = 84.8347887180423
y68=0.86033358901938y_{68} = -0.86033358901938
The values of the extrema at the points:
(-12.645287223856643, -12.6059312978927)

(-72.27046706030896, 72.2635495982494)

(72.27046706030896, -72.2635495982494)

(-84.83478871804229, 84.8288955236568)

(9.529334405361963, -9.47729425947979)

(78.55254598424293, -78.5461815917343)

(-6.437298179171947, -6.36100394483385)

(37.7256128277765, 37.71236621281)

(-18.902409956860023, -18.876013697969)

(-56.56634427982152, -56.5575071728762)

(-37.7256128277765, -37.71236621281)

(22.036496727938566, -22.0138420791585)

(-69.12950297389526, -69.1222713069218)

(-28.30964285445201, 28.2919975390943)

(47.14509773676103, -47.1344957575419)

(-97.39963887907376, 97.3945057956234)

(-25.172446326646664, -25.1526068178715)

(-59.70700730533546, 59.6986348402658)

(-9.529334405361963, 9.47729425947979)

(6.437298179171947, 6.36100394483385)

(-53.42579047739466, 53.4164341598961)

(28.30964285445201, -28.2919975390943)

(91.11716139446474, -91.1116744496469)

(25.172446326646664, 25.1526068178715)

(-15.771284874815882, 15.7396769621337)

(-100.54091078684232, -100.535938055826)

(44.005017920830845, 43.9936599791065)

(-65.98859869849039, 65.9810229367917)

(81.69364923560168, 81.6875294965246)

(-116.2475303039321, 116.243229375987)

(-91.11716139446474, 91.1116744496469)

(-47.14509773676103, 47.1344957575419)

(-147.66162685535437, 147.658240851742)

(-3.4256184594817283, 3.2883713955909)

(-50.28536633777365, -50.2754260353972)

(-94.25838834503986, -94.2530842251087)

(97.39963887907376, -97.3945057956234)

(-87.97596055249322, -87.9702777324248)

(94.25838834503986, 94.2530842251087)

(75.41148348884815, 75.4048540732019)

(15.771284874815882, -15.7396769621337)

(53.42579047739466, -53.4164341598961)

(69.12950297389526, 69.1222713069218)

(87.97596055249322, 87.9702777324248)

(-75.41148348884815, -75.4048540732019)

(-81.69364923560168, -81.6875294965246)

(3.4256184594817283, -3.2883713955909)

(62.84776319445445, 62.8398089721545)

(-40.86517033048807, 40.8529404645174)

(59.70700730533546, -59.6986348402658)

(-78.55254598424293, 78.5461815917343)

(40.86517033048807, -40.8529404645174)

(12.645287223856643, 12.6059312978927)

(-34.58642421528892, 34.5719767335884)

(-31.447714637546234, -31.4318272785346)

(34.58642421528892, -34.5719767335884)

(-22.036496727938566, 22.0138420791585)

(31.447714637546234, 31.4318272785346)

(50.28536633777365, 50.2754260353972)

(56.56634427982152, 56.5575071728762)

(-44.005017920830845, -43.9936599791065)

(100.54091078684232, 100.535938055826)

(65.98859869849039, -65.9810229367917)

(-62.84776319445445, -62.8398089721545)

(0.8603335890193797, 0.561096338191045)

(18.902409956860023, 18.876013697969)

(84.83478871804229, -84.8288955236568)

(-0.8603335890193797, -0.561096338191045)


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
y1=12.6452872238566y_{1} = -12.6452872238566
y2=72.270467060309y_{2} = 72.270467060309
y3=9.52933440536196y_{3} = 9.52933440536196
y4=78.5525459842429y_{4} = 78.5525459842429
y5=6.43729817917195y_{5} = -6.43729817917195
y6=18.90240995686y_{6} = -18.90240995686
y7=56.5663442798215y_{7} = -56.5663442798215
y8=37.7256128277765y_{8} = -37.7256128277765
y9=22.0364967279386y_{9} = 22.0364967279386
y10=69.1295029738953y_{10} = -69.1295029738953
y11=47.145097736761y_{11} = 47.145097736761
y12=25.1724463266467y_{12} = -25.1724463266467
y13=28.309642854452y_{13} = 28.309642854452
y14=91.1171613944647y_{14} = 91.1171613944647
y15=100.540910786842y_{15} = -100.540910786842
y16=50.2853663377737y_{16} = -50.2853663377737
y17=94.2583883450399y_{17} = -94.2583883450399
y18=97.3996388790738y_{18} = 97.3996388790738
y19=87.9759605524932y_{19} = -87.9759605524932
y20=15.7712848748159y_{20} = 15.7712848748159
y21=53.4257904773947y_{21} = 53.4257904773947
y22=75.4114834888481y_{22} = -75.4114834888481
y23=81.6936492356017y_{23} = -81.6936492356017
y24=3.42561845948173y_{24} = 3.42561845948173
y25=59.7070073053355y_{25} = 59.7070073053355
y26=40.8651703304881y_{26} = 40.8651703304881
y27=31.4477146375462y_{27} = -31.4477146375462
y28=34.5864242152889y_{28} = 34.5864242152889
y29=44.0050179208308y_{29} = -44.0050179208308
y30=65.9885986984904y_{30} = 65.9885986984904
y31=62.8477631944545y_{31} = -62.8477631944545
y32=84.8347887180423y_{32} = 84.8347887180423
y33=0.86033358901938y_{33} = -0.86033358901938
Maxima of the function at points:
y33=72.270467060309y_{33} = -72.270467060309
y33=84.8347887180423y_{33} = -84.8347887180423
y33=37.7256128277765y_{33} = 37.7256128277765
y33=28.309642854452y_{33} = -28.309642854452
y33=97.3996388790738y_{33} = -97.3996388790738
y33=59.7070073053355y_{33} = -59.7070073053355
y33=9.52933440536196y_{33} = -9.52933440536196
y33=6.43729817917195y_{33} = 6.43729817917195
y33=53.4257904773947y_{33} = -53.4257904773947
y33=25.1724463266467y_{33} = 25.1724463266467
y33=15.7712848748159y_{33} = -15.7712848748159
y33=44.0050179208308y_{33} = 44.0050179208308
y33=65.9885986984904y_{33} = -65.9885986984904
y33=81.6936492356017y_{33} = 81.6936492356017
y33=116.247530303932y_{33} = -116.247530303932
y33=91.1171613944647y_{33} = -91.1171613944647
y33=47.145097736761y_{33} = -47.145097736761
y33=147.661626855354y_{33} = -147.661626855354
y33=3.42561845948173y_{33} = -3.42561845948173
y33=94.2583883450399y_{33} = 94.2583883450399
y33=75.4114834888481y_{33} = 75.4114834888481
y33=69.1295029738953y_{33} = 69.1295029738953
y33=87.9759605524932y_{33} = 87.9759605524932
y33=62.8477631944545y_{33} = 62.8477631944545
y33=40.8651703304881y_{33} = -40.8651703304881
y33=78.5525459842429y_{33} = -78.5525459842429
y33=12.6452872238566y_{33} = 12.6452872238566
y33=34.5864242152889y_{33} = -34.5864242152889
y33=22.0364967279386y_{33} = -22.0364967279386
y33=31.4477146375462y_{33} = 31.4477146375462
y33=50.2853663377737y_{33} = 50.2853663377737
y33=56.5663442798215y_{33} = 56.5663442798215
y33=100.540910786842y_{33} = 100.540910786842
y33=0.86033358901938y_{33} = 0.86033358901938
y33=18.90240995686y_{33} = 18.90240995686
Decreasing at intervals
[97.3996388790738,)\left[97.3996388790738, \infty\right)
Increasing at intervals
(,100.540910786842]\left(-\infty, -100.540910786842\right]
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dy2f(y)=0\frac{d^{2}}{d y^{2}} f{\left(y \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dy2f(y)=\frac{d^{2}}{d y^{2}} f{\left(y \right)} =
the second derivative
(ycos(y)+2sin(y))=0- (y \cos{\left(y \right)} + 2 \sin{\left(y \right)}) = 0
Solve this equation
The roots of this equation
y1=29.9118938695518y_{1} = 29.9118938695518
y2=48.7357007949054y_{2} = 48.7357007949054
y3=83.2762171649775y_{3} = 83.2762171649775
y4=95.839441141233y_{4} = 95.839441141233
y5=86.4169374541167y_{5} = 86.4169374541167
y6=51.8748140534268y_{6} = -51.8748140534268
y7=36.1835330907526y_{7} = 36.1835330907526
y8=0y_{8} = 0
y9=51.8748140534268y_{9} = 51.8748140534268
y10=67.573830670859y_{10} = 67.573830670859
y11=33.0471686947054y_{11} = 33.0471686947054
y12=8.09616360322292y_{12} = 8.09616360322292
y13=26.7780870755585y_{13} = -26.7780870755585
y14=5.08698509410227y_{14} = 5.08698509410227
y15=55.0142096788381y_{15} = -55.0142096788381
y16=92.6985552433969y_{16} = -92.6985552433969
y17=61.2936749662429y_{17} = 61.2936749662429
y18=11.17270586833y_{18} = 11.17270586833
y19=20.5175229099417y_{19} = 20.5175229099417
y20=36.1835330907526y_{20} = -36.1835330907526
y21=23.6463238196036y_{21} = -23.6463238196036
y22=58.153842078645y_{22} = -58.153842078645
y23=20.5175229099417y_{23} = -20.5175229099417
y24=70.7141100665485y_{24} = 70.7141100665485
y25=45.5969279840735y_{25} = 45.5969279840735
y26=14.2763529183365y_{26} = 14.2763529183365
y27=42.458570771699y_{27} = 42.458570771699
y28=5.08698509410227y_{28} = -5.08698509410227
y29=29.9118938695518y_{29} = -29.9118938695518
y30=98.9803718651523y_{30} = 98.9803718651523
y31=42.458570771699y_{31} = -42.458570771699
y32=80.1355651940744y_{32} = -80.1355651940744
y33=89.5577188827244y_{33} = -89.5577188827244
y34=11.17270586833y_{34} = -11.17270586833
y35=2.2889297281034y_{35} = 2.2889297281034
y36=48.7357007949054y_{36} = -48.7357007949054
y37=17.3932439645948y_{37} = -17.3932439645948
y38=92.6985552433969y_{38} = 92.6985552433969
y39=39.3207281322521y_{39} = 39.3207281322521
y40=39.3207281322521y_{40} = -39.3207281322521
y41=83.2762171649775y_{41} = -83.2762171649775
y42=73.8545010149048y_{42} = 73.8545010149048
y43=58.153842078645y_{43} = 58.153842078645
y44=8.09616360322292y_{44} = -8.09616360322292
y45=76.9949898891676y_{45} = -76.9949898891676
y46=64.4336791037316y_{46} = 64.4336791037316
y47=64.4336791037316y_{47} = -64.4336791037316
y48=89.5577188827244y_{48} = 89.5577188827244
y49=55.0142096788381y_{49} = 55.0142096788381
y50=33.0471686947054y_{50} = -33.0471686947054
y51=67.573830670859y_{51} = -67.573830670859
y52=80.1355651940744y_{52} = 80.1355651940744
y53=76.9949898891676y_{53} = 76.9949898891676
y54=70.7141100665485y_{54} = -70.7141100665485
y55=61.2936749662429y_{55} = -61.2936749662429
y56=17.3932439645948y_{56} = 17.3932439645948
y57=26.7780870755585y_{57} = 26.7780870755585
y58=14.2763529183365y_{58} = -14.2763529183365
y59=98.9803718651523y_{59} = -98.9803718651523
y60=23.6463238196036y_{60} = 23.6463238196036
y61=86.4169374541167y_{61} = -86.4169374541167
y62=73.8545010149048y_{62} = -73.8545010149048
y63=45.5969279840735y_{63} = -45.5969279840735
y64=2.2889297281034y_{64} = -2.2889297281034
y65=95.839441141233y_{65} = -95.839441141233

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[95.839441141233,)\left[95.839441141233, \infty\right)
Convex at the intervals
(,95.839441141233]\left(-\infty, -95.839441141233\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at y->+oo and y->-oo
limy(ycos(y))=,\lim_{y \to -\infty}\left(y \cos{\left(y \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limy(ycos(y))=,\lim_{y \to \infty}\left(y \cos{\left(y \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of y*cos(y), divided by y at y->+oo and y ->-oo
limycos(y)=1,1\lim_{y \to -\infty} \cos{\left(y \right)} = \left\langle -1, 1\right\rangle
Let's take the limit
so,
inclined asymptote equation on the left:
y=1,1yy = \left\langle -1, 1\right\rangle y
limycos(y)=1,1\lim_{y \to \infty} \cos{\left(y \right)} = \left\langle -1, 1\right\rangle
Let's take the limit
so,
inclined asymptote equation on the right:
y=1,1yy = \left\langle -1, 1\right\rangle y
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-y) и f = -f(-y).
So, check:
ycos(y)=ycos(y)y \cos{\left(y \right)} = - y \cos{\left(y \right)}
- No
ycos(y)=ycos(y)y \cos{\left(y \right)} = y \cos{\left(y \right)}
- Yes
so, the function
is
odd