Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$2 \left(\frac{\left(3 \left|{x}\right| - 2\right) \left(6 \left|{x}\right| \delta\left(x\right) - 2 \delta\left(x\right) + 3 \operatorname{sign}^{2}{\left(x \right)} - \frac{4 \left(3 \left|{x}\right| - 1\right)^{2} \operatorname{sign}^{2}{\left(x \right)}}{3 x^{2} - 2 \left|{x}\right|}\right)}{\left(3 x^{2} - 2 \left|{x}\right|\right)^{2}} + \frac{3 \delta\left(x\right)}{- 3 x^{2} + 2 \left|{x}\right|} + \frac{6 \left(3 \left|{x}\right| - 1\right) \operatorname{sign}^{2}{\left(x \right)}}{\left(- 3 x^{2} + 2 \left|{x}\right|\right)^{2}}\right) = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections