Mister Exam

Other calculators

Graphing y = y=(1,5|x|-1)/(|x|-1,5|x|^2)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
        3*|x|      
        ----- - 1  
          2        
f(x) = ------------
                  2
             3*|x| 
       |x| - ------
               2   
$$f{\left(x \right)} = \frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|}$$
f = (3*|x|/2 - 1)/(-3*x^2/2 + |x|)
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = -0.666666666666667$$
$$x_{2} = 0$$
$$x_{3} = 0.666666666666667$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|} = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (3*|x|/2 - 1)/(|x| - 3*x^2/2).
$$\frac{-1 + \frac{3 \left|{0}\right|}{2}}{\left|{0}\right| - \frac{3 \left|{0}\right|^{2}}{2}}$$
The result:
$$f{\left(0 \right)} = \tilde{\infty}$$
sof doesn't intersect Y
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{\left(3 \left|{x}\right| \operatorname{sign}{\left(x \right)} - \operatorname{sign}{\left(x \right)}\right) \left(\frac{3 \left|{x}\right|}{2} - 1\right)}{\left(- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|\right)^{2}} + \frac{3 \operatorname{sign}{\left(x \right)}}{2 \left(- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|\right)} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$2 \left(\frac{\left(3 \left|{x}\right| - 2\right) \left(6 \left|{x}\right| \delta\left(x\right) - 2 \delta\left(x\right) + 3 \operatorname{sign}^{2}{\left(x \right)} - \frac{4 \left(3 \left|{x}\right| - 1\right)^{2} \operatorname{sign}^{2}{\left(x \right)}}{3 x^{2} - 2 \left|{x}\right|}\right)}{\left(3 x^{2} - 2 \left|{x}\right|\right)^{2}} + \frac{3 \delta\left(x\right)}{- 3 x^{2} + 2 \left|{x}\right|} + \frac{6 \left(3 \left|{x}\right| - 1\right) \operatorname{sign}^{2}{\left(x \right)}}{\left(- 3 x^{2} + 2 \left|{x}\right|\right)^{2}}\right) = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Vertical asymptotes
Have:
$$x_{1} = -0.666666666666667$$
$$x_{2} = 0$$
$$x_{3} = 0.666666666666667$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|}\right) = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 0$$
$$\lim_{x \to \infty}\left(\frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|}\right) = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (3*|x|/2 - 1)/(|x| - 3*x^2/2), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\frac{3 \left|{x}\right|}{2} - 1}{x \left(- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|\right)}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{\frac{3 \left|{x}\right|}{2} - 1}{x \left(- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|\right)}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|} = \frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|}$$
- Yes
$$\frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|} = - \frac{\frac{3 \left|{x}\right|}{2} - 1}{- \frac{3 \left|{x}\right|^{2}}{2} + \left|{x}\right|}$$
- No
so, the function
is
even