Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{x} x = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = -113.080930865701$$
$$x_{2} = -119.06914228288$$
$$x_{3} = -65.2735421114241$$
$$x_{4} = -67.2586229734047$$
$$x_{5} = -97.1205993527235$$
$$x_{6} = -93.1329980618501$$
$$x_{7} = -83.1702113647074$$
$$x_{8} = -111.085180982879$$
$$x_{9} = -109.089608132217$$
$$x_{10} = -35.8463765939876$$
$$x_{11} = -107.094223645316$$
$$x_{12} = -32.0913241206348$$
$$x_{13} = -85.1619388762717$$
$$x_{14} = -55.369883839131$$
$$x_{15} = -57.3470343910748$$
$$x_{16} = -99.1148331129772$$
$$x_{17} = -71.2319064024203$$
$$x_{18} = -33.9540517145623$$
$$x_{19} = -81.1789726997072$$
$$x_{20} = -63.2896724119287$$
$$x_{21} = -77.1981473783759$$
$$x_{22} = -37.7592416454249$$
$$x_{23} = -75.2086687051389$$
$$x_{24} = -69.2447823410302$$
$$x_{25} = -115.076847342498$$
$$x_{26} = -105.099039845199$$
$$x_{27} = -91.1396752246407$$
$$x_{28} = -103.10407015753$$
$$x_{29} = -41.6261544568938$$
$$x_{30} = -73.2198969347223$$
$$x_{31} = 0$$
$$x_{32} = -53.3950840173982$$
$$x_{33} = -117.072920781941$$
$$x_{34} = -87.1541152286569$$
$$x_{35} = -45.5287883412543$$
$$x_{36} = -59.3262172000187$$
$$x_{37} = -51.4230249783974$$
$$x_{38} = -43.5740005056864$$
$$x_{39} = -101.109329237227$$
$$x_{40} = -89.146704685936$$
$$x_{41} = -95.1266472537626$$
$$x_{42} = -61.3071694941258$$
$$x_{43} = -49.4541901054407$$
$$x_{44} = -39.6870583075465$$
$$x_{45} = -79.1882678183563$$
$$x_{46} = -47.4891864944529$$
$$x_{47} = -121.065503606275$$