Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- \frac{\frac{x^{2} \left(- \frac{8 x^{2}}{x^{2} - 1} + 6 + \frac{\left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{x^{2}}{\left(x^{2} - 1\right)^{2}} - 1\right)}\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} - 2}{\left(x^{2} - 1\right) \sqrt{- \frac{x^{2}}{\left(1 - x^{2}\right)^{2}} + 1}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -1.35560118154383$$
$$x_{2} = -0.69551980859689$$
$$x_{3} = 0.69551980859689$$
$$x_{4} = 1.35560118154383$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -1$$
$$x_{2} = 1$$
$$\lim_{x \to -1^-}\left(- \frac{\frac{x^{2} \left(- \frac{8 x^{2}}{x^{2} - 1} + 6 + \frac{\left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{x^{2}}{\left(x^{2} - 1\right)^{2}} - 1\right)}\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} - 2}{\left(x^{2} - 1\right) \sqrt{- \frac{x^{2}}{\left(1 - x^{2}\right)^{2}} + 1}}\right) = - \infty i$$
$$\lim_{x \to -1^+}\left(- \frac{\frac{x^{2} \left(- \frac{8 x^{2}}{x^{2} - 1} + 6 + \frac{\left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{x^{2}}{\left(x^{2} - 1\right)^{2}} - 1\right)}\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} - 2}{\left(x^{2} - 1\right) \sqrt{- \frac{x^{2}}{\left(1 - x^{2}\right)^{2}} + 1}}\right) = \infty i$$
- the limits are not equal, so
$$x_{1} = -1$$
- is an inflection point
$$\lim_{x \to 1^-}\left(- \frac{\frac{x^{2} \left(- \frac{8 x^{2}}{x^{2} - 1} + 6 + \frac{\left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{x^{2}}{\left(x^{2} - 1\right)^{2}} - 1\right)}\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} - 2}{\left(x^{2} - 1\right) \sqrt{- \frac{x^{2}}{\left(1 - x^{2}\right)^{2}} + 1}}\right) = \infty i$$
$$\lim_{x \to 1^+}\left(- \frac{\frac{x^{2} \left(- \frac{8 x^{2}}{x^{2} - 1} + 6 + \frac{\left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)^{2}}{\left(x^{2} - 1\right) \left(\frac{x^{2}}{\left(x^{2} - 1\right)^{2}} - 1\right)}\right)}{x^{2} - 1} + \frac{4 x^{2}}{x^{2} - 1} - 2}{\left(x^{2} - 1\right) \sqrt{- \frac{x^{2}}{\left(1 - x^{2}\right)^{2}} + 1}}\right) = - \infty i$$
- the limits are not equal, so
$$x_{2} = 1$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis