Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$x^{x} x^{x^{x}} \left(x^{x} \left(\left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} + \frac{1}{x}\right)^{2} + \left(\log{\left(x \right)} + 1\right)^{2} \log{\left(x \right)} + \frac{2 \left(\log{\left(x \right)} + 1\right)}{x} + \frac{\log{\left(x \right)}}{x} - \frac{1}{x^{2}}\right) = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 0.66765727650174$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[0.66765727650174, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 0.66765727650174\right]$$