Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{x} x^{2} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = -89.4277891533326$$
$$x_{2} = -40.5471004173384$$
$$x_{3} = -69.628833400408$$
$$x_{4} = -46.2166624604922$$
$$x_{5} = -61.757295261576$$
$$x_{6} = 0$$
$$x_{7} = -109.31131787361$$
$$x_{8} = -79.5128437462747$$
$$x_{9} = -36.8813855334114$$
$$x_{10} = -63.7212246430644$$
$$x_{11} = -111.302305760974$$
$$x_{12} = -91.413426044512$$
$$x_{13} = -105.330526752392$$
$$x_{14} = -53.9389966224242$$
$$x_{15} = -81.4938033513721$$
$$x_{16} = -97.3744818786337$$
$$x_{17} = -107.320716385987$$
$$x_{18} = -119.269680169774$$
$$x_{19} = -57.8395946559803$$
$$x_{20} = -93.3997888155798$$
$$x_{21} = -101.351496587439$$
$$x_{22} = -35.1082010514801$$
$$x_{23} = -55.886836936279$$
$$x_{24} = -117.277362966189$$
$$x_{25} = -65.6880004393027$$
$$x_{26} = -67.6572960646381$$
$$x_{27} = -42.4197387542301$$
$$x_{28} = -113.293656653183$$
$$x_{29} = -115.285349010188$$
$$x_{30} = -75.5546705895527$$
$$x_{31} = -38.6983611853733$$
$$x_{32} = -51.9968968445388$$
$$x_{33} = -87.4429379040025$$
$$x_{34} = -59.7965985080519$$
$$x_{35} = -121.262283642069$$
$$x_{36} = -99.3627195189532$$
$$x_{37} = -44.3108762649905$$
$$x_{38} = -85.4589388313701$$
$$x_{39} = -95.3868236343622$$
$$x_{40} = -83.4758662349933$$
$$x_{41} = -77.5330929772024$$
$$x_{42} = -103.340776718801$$
$$x_{43} = -48.134267415089$$
$$x_{44} = -73.5777125278413$$
$$x_{45} = -50.061558962287$$
$$x_{46} = -71.6023740669893$$