Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{\frac{\left(-1\right) x}{2}} x^{2} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = 122.001636542925$$
$$x_{2} = 83.3907094556794$$
$$x_{3} = 92.8711313296711$$
$$x_{4} = 120.041406599039$$
$$x_{5} = 111.903844163895$$
$$x_{6} = 0$$
$$x_{7} = 89.0566471878038$$
$$x_{8} = 137.736603530702$$
$$x_{9} = 72.3837747282901$$
$$x_{10} = 123.963564638001$$
$$x_{11} = 143.656397501743$$
$$x_{12} = 139.708897233921$$
$$x_{13} = 100.565248683702$$
$$x_{14} = 112.219995158752$$
$$x_{15} = 74.1751207498496$$
$$x_{16} = 90.9606974407717$$
$$x_{17} = 102.499602121155$$
$$x_{18} = 127.892094344434$$
$$x_{19} = 79.6624387990361$$
$$x_{20} = 141.682179321777$$
$$x_{21} = 81.5208130407554$$
$$x_{22} = 116.126522362797$$
$$x_{23} = 98.6348274721793$$
$$x_{24} = 108.323137859362$$
$$x_{25} = 135.765354503655$$
$$x_{26} = 133.795210836192$$
$$x_{27} = 106.378824113363$$
$$x_{28} = 94.7873184046098$$
$$x_{29} = 77.8172635150345$$
$$x_{30} = 96.7087102837885$$
$$x_{31} = 104.437558301726$$
$$x_{32} = 87.1597095047415$$
$$x_{33} = 129.858506970676$$
$$x_{34} = 85.2707324526338$$
$$x_{35} = 125.927083409265$$
$$x_{36} = 118.082992299051$$
$$x_{37} = 110.270265102252$$
$$x_{38} = 75.9873233164275$$
$$x_{39} = 114.172138128465$$
$$x_{40} = 131.826238044109$$