Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • (x^2-x-6)/(x-2)
  • -x^2(x+4)^2
  • x√2-x
  • -x^2+6x-8
  • Derivative of:
  • (x^2-1)/(x*3+1) (x^2-1)/(x*3+1)
  • Identical expressions

  • (x^ two - one)/(x* three + one)
  • (x squared minus 1) divide by (x multiply by 3 plus 1)
  • (x to the power of two minus one) divide by (x multiply by three plus one)
  • (x2-1)/(x*3+1)
  • x2-1/x*3+1
  • (x²-1)/(x*3+1)
  • (x to the power of 2-1)/(x*3+1)
  • (x^2-1)/(x3+1)
  • (x2-1)/(x3+1)
  • x2-1/x3+1
  • x^2-1/x3+1
  • (x^2-1) divide by (x*3+1)
  • Similar expressions

  • (x^2+1)/(x*3+1)
  • (x^2-1)/(x*3-1)

Graphing y = (x^2-1)/(x*3+1)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
         2    
        x  - 1
f(x) = -------
       x*3 + 1
f(x)=x213x+1f{\left(x \right)} = \frac{x^{2} - 1}{3 x + 1}
f = (x^2 - 1)/(3*x + 1)
The graph of the function
02468-8-6-4-2-1010-2020
The domain of the function
The points at which the function is not precisely defined:
x1=0.333333333333333x_{1} = -0.333333333333333
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
x213x+1=0\frac{x^{2} - 1}{3 x + 1} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=1x_{1} = -1
x2=1x_{2} = 1
Numerical solution
x1=1x_{1} = 1
x2=1x_{2} = -1
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (x^2 - 1)/(x*3 + 1).
1+0203+1\frac{-1 + 0^{2}}{0 \cdot 3 + 1}
The result:
f(0)=1f{\left(0 \right)} = -1
The point:
(0, -1)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
2x3x+13(x21)(3x+1)2=0\frac{2 x}{3 x + 1} - \frac{3 \left(x^{2} - 1\right)}{\left(3 x + 1\right)^{2}} = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
2(6x3x+1+1+9(x21)(3x+1)2)3x+1=0\frac{2 \left(- \frac{6 x}{3 x + 1} + 1 + \frac{9 \left(x^{2} - 1\right)}{\left(3 x + 1\right)^{2}}\right)}{3 x + 1} = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Vertical asymptotes
Have:
x1=0.333333333333333x_{1} = -0.333333333333333
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(x213x+1)=\lim_{x \to -\infty}\left(\frac{x^{2} - 1}{3 x + 1}\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(x213x+1)=\lim_{x \to \infty}\left(\frac{x^{2} - 1}{3 x + 1}\right) = \infty
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (x^2 - 1)/(x*3 + 1), divided by x at x->+oo and x ->-oo
limx(x21x(3x+1))=13\lim_{x \to -\infty}\left(\frac{x^{2} - 1}{x \left(3 x + 1\right)}\right) = \frac{1}{3}
Let's take the limit
so,
inclined asymptote equation on the left:
y=x3y = \frac{x}{3}
limx(x21x(3x+1))=13\lim_{x \to \infty}\left(\frac{x^{2} - 1}{x \left(3 x + 1\right)}\right) = \frac{1}{3}
Let's take the limit
so,
inclined asymptote equation on the right:
y=x3y = \frac{x}{3}
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
x213x+1=x2113x\frac{x^{2} - 1}{3 x + 1} = \frac{x^{2} - 1}{1 - 3 x}
- No
x213x+1=x2113x\frac{x^{2} - 1}{3 x + 1} = - \frac{x^{2} - 1}{1 - 3 x}
- No
so, the function
not is
neither even, nor odd