Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{6 - \frac{6 \left(2 x - 1\right)}{x - 1} + \frac{\left(x^{3} + 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) - 2 + \frac{2 x - 1}{x - 1} + \frac{2 x - 1}{x}\right)}{x^{2} \left(x - 1\right)}}{x - 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - 2^{\frac{2}{3}} - \sqrt[3]{2} - 1$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$x_{2} = 1$$
$$\lim_{x \to 0^-}\left(\frac{6 - \frac{6 \left(2 x - 1\right)}{x - 1} + \frac{\left(x^{3} + 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) - 2 + \frac{2 x - 1}{x - 1} + \frac{2 x - 1}{x}\right)}{x^{2} \left(x - 1\right)}}{x - 1}\right) = \infty$$
$$\lim_{x \to 0^+}\left(\frac{6 - \frac{6 \left(2 x - 1\right)}{x - 1} + \frac{\left(x^{3} + 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) - 2 + \frac{2 x - 1}{x - 1} + \frac{2 x - 1}{x}\right)}{x^{2} \left(x - 1\right)}}{x - 1}\right) = -\infty$$
- the limits are not equal, so
$$x_{1} = 0$$
- is an inflection point
$$\lim_{x \to 1^-}\left(\frac{6 - \frac{6 \left(2 x - 1\right)}{x - 1} + \frac{\left(x^{3} + 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) - 2 + \frac{2 x - 1}{x - 1} + \frac{2 x - 1}{x}\right)}{x^{2} \left(x - 1\right)}}{x - 1}\right) = -\infty$$
$$\lim_{x \to 1^+}\left(\frac{6 - \frac{6 \left(2 x - 1\right)}{x - 1} + \frac{\left(x^{3} + 1\right) \left(\left(2 x - 1\right) \left(\frac{1}{x - 1} + \frac{1}{x}\right) - 2 + \frac{2 x - 1}{x - 1} + \frac{2 x - 1}{x}\right)}{x^{2} \left(x - 1\right)}}{x - 1}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 1$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[- 2^{\frac{2}{3}} - \sqrt[3]{2} - 1, \infty\right)$$
Convex at the intervals
$$\left(-\infty, - 2^{\frac{2}{3}} - \sqrt[3]{2} - 1\right]$$