Inclined asymptote can be found by calculating the limit of x^sin(x), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{x^{\sin{\left(x \right)}}}{x}\right) = \left(-\infty\right)^{\left\langle -2, 0\right\rangle}$$
Let's take the limitso,
inclined asymptote equation on the left:
$$y = \left(-\infty\right)^{\left\langle -2, 0\right\rangle} x$$
$$\lim_{x \to \infty}\left(\frac{x^{\sin{\left(x \right)}}}{x}\right) = \infty^{\left\langle -2, 0\right\rangle}$$
Let's take the limitso,
inclined asymptote equation on the right:
$$y = \infty^{\left\langle -2, 0\right\rangle} x$$