Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • 2x^2-5x
  • 2x^2+6x
  • 1/(x^2+2x)
  • 18x-x^3
  • Identical expressions

  • x^log two (x+2)
  • x to the power of logarithm of 2(x plus 2)
  • x to the power of logarithm of two (x plus 2)
  • xlog2(x+2)
  • xlog2x+2
  • x^log2x+2
  • Similar expressions

  • x^log2(x-2)

Graphing y = x^log2(x+2)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
        log(x + 2)
        ----------
          log(2)  
f(x) = x          
$$f{\left(x \right)} = x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}}$$
f = x^(log(x + 2)/log(2))
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = 0$$
Numerical solution
$$x_{1} = 0$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to x^(log(x + 2)/log(2)).
$$0^{\frac{\log{\left(2 \right)}}{\log{\left(2 \right)}}}$$
The result:
$$f{\left(0 \right)} = 0$$
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} \left(\frac{\log{\left(x \right)}}{\left(x + 2\right) \log{\left(2 \right)}} + \frac{\log{\left(x + 2 \right)}}{x \log{\left(2 \right)}}\right) = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} \left(\frac{\left(\frac{\log{\left(x \right)}}{x + 2} + \frac{\log{\left(x + 2 \right)}}{x}\right)^{2}}{\log{\left(2 \right)}} - \frac{\log{\left(x \right)}}{\left(x + 2\right)^{2}} + \frac{2}{x \left(x + 2\right)} - \frac{\log{\left(x + 2 \right)}}{x^{2}}\right)}{\log{\left(2 \right)}} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = 0.198270593872683$$

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[0.198270593872683, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 0.198270593872683\right]$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} = \infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty} x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} = \infty$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x^(log(x + 2)/log(2)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}}}{x}\right) = \infty$$
Let's take the limit
so,
inclined asymptote on the right doesn’t exist
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} = \left(- x\right)^{\frac{\log{\left(2 - x \right)}}{\log{\left(2 \right)}}}$$
- No
$$x^{\frac{\log{\left(x + 2 \right)}}{\log{\left(2 \right)}}} = - \left(- x\right)^{\frac{\log{\left(2 - x \right)}}{\log{\left(2 \right)}}}$$
- No
so, the function
not is
neither even, nor odd