Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$x^{e^{x}} \left(\left(\log{\left(x \right)} + \frac{1}{x}\right)^{2} e^{x} + \log{\left(x \right)} + \frac{2}{x} - \frac{1}{x^{2}}\right) e^{x} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 0.274972858182512$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[0.274972858182512, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 0.274972858182512\right]$$