Mister Exam

Graphing y = xsqrtx-1,5ln_x+2

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
           ___   3*log(x)    
f(x) = x*\/ x  - -------- + 2
                    2        
f(x)=(xx3log(x)2)+2f{\left(x \right)} = \left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2
f = sqrt(x)*x - 3*log(x)/2 + 2
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
(xx3log(x)2)+2=0\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2 = 0
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to x*sqrt(x) - 3*log(x)/2 + 2.
(3log(x)2+00)+2\left(- \frac{3 \log{\left(x \right)}}{2} + 0 \sqrt{0}\right) + 2
The result:
f(0)=23log(x)2f{\left(0 \right)} = 2 - \frac{3 \log{\left(x \right)}}{2}
The point:
(0, 2 - 3*log(x)/2)
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
34x=0\frac{3}{4 \sqrt{x}} = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx((xx3log(x)2)+2)=i\lim_{x \to -\infty}\left(\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2\right) = - \infty i
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx((xx3log(x)2)+2)=\lim_{x \to \infty}\left(\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2\right) = \infty
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x*sqrt(x) - 3*log(x)/2 + 2, divided by x at x->+oo and x ->-oo
limx((xx3log(x)2)+2x)=i\lim_{x \to -\infty}\left(\frac{\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2}{x}\right) = \infty i
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
limx((xx3log(x)2)+2x)=\lim_{x \to \infty}\left(\frac{\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2}{x}\right) = \infty
Let's take the limit
so,
inclined asymptote on the right doesn’t exist
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
(xx3log(x)2)+2=xx3log(x)2+2\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2 = - x \sqrt{- x} - \frac{3 \log{\left(x \right)}}{2} + 2
- No
(xx3log(x)2)+2=xx+3log(x)22\left(\sqrt{x} x - \frac{3 \log{\left(x \right)}}{2}\right) + 2 = x \sqrt{- x} + \frac{3 \log{\left(x \right)}}{2} - 2
- No
so, the function
not is
neither even, nor odd