Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 53.3321085176254$$
$$x_{2} = -91.0622680279826$$
$$x_{3} = -53.3321085176254$$
$$x_{4} = 78.4888647223284$$
$$x_{5} = -40.7426059185751$$
$$x_{6} = 15.4505036738754$$
$$x_{7} = -34.4415105438615$$
$$x_{8} = 8.98681891581813$$
$$x_{9} = -8.98681891581813$$
$$x_{10} = -84.7758271362638$$
$$x_{11} = 91.0622680279826$$
$$x_{12} = -78.4888647223284$$
$$x_{13} = 34.4415105438615$$
$$x_{14} = -59.6231975817859$$
$$x_{15} = 97.3482884639088$$
$$x_{16} = 21.8082433188578$$
$$x_{17} = 59.6231975817859$$
$$x_{18} = 40.7426059185751$$
$$x_{19} = -72.2012444887512$$
$$x_{20} = -65.912778079645$$
$$x_{21} = -97.3482884639088$$
$$x_{22} = 72.2012444887512$$
$$x_{23} = -21.8082433188578$$
$$x_{24} = -47.038904997378$$
$$x_{25} = 28.1323878256629$$
$$x_{26} = 65.912778079645$$
$$x_{27} = 84.7758271362638$$
$$x_{28} = -28.1323878256629$$
$$x_{29} = 47.038904997378$$
$$x_{30} = -15.4505036738754$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$x_{2} = 6.28318530717959$$
$$\lim_{x \to 0^-}\left(\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) = - \frac{1}{3}$$
$$\lim_{x \to 0^+}\left(\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) = - \frac{1}{3}$$
- limits are equal, then skip the corresponding point
$$\lim_{x \to 6.28318530717959^-}\left(\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) = -\infty$$
$$\lim_{x \to 6.28318530717959^+}\left(\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 6.28318530717959$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[-8.98681891581813, 8.98681891581813\right]$$
Convex at the intervals
$$\left(-\infty, -97.3482884639088\right]$$