In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivative2xsin(x)cos(x)+sin2(x)=0Solve this equationThe roots of this equation
x1=−97.3893722612836x2=−43.9822971502571x3=278.032748190065x4=−45.5640665961997x5=56.5486677646163x6=−14.1724320747999x7=−73.8341991854591x8=28.2743338823081x9=−81.6814089933346x10=−15.707963267949x11=72.2566310325652x12=48.7049516666752x13=−80.1168534696549x14=95.8237937978449x15=−29.861872403816x16=89.5409746049841x17=−53.4070751110265x18=25.1327412287183x19=100.530964914873x20=−9.42477796076938x21=81.6814089933346x22=−83.2582106616487x23=−21.9911485751286x24=1.83659720315213x25=80.1168534696549x26=−20.4448034666183x27=−58.1280655761511x28=−72.2566310325652x29=15.707963267949x30=50.2654824574367x31=−28.2743338823081x32=−6.28318530717959x33=23.5831433102848x34=3.14159265358979x35=−306.306916073247x36=−84.8230016469244x37=−86.3995849739529x38=42.4232862577008x39=−51.8459224452234x40=51.8459224452234x41=−36.1421488970061x42=−87.9645943005142x43=−42.4232862577008x44=58.1280655761511x45=−61.2692172687226x46=0x47=−1.83659720315213x48=−65.9734457253857x49=−89.5409746049841x50=−67.5516436614121x51=6.28318530717959x52=94.2477796076938x53=65.9734457253857x54=7.91705268466621x55=21.9911485751286x56=64.410411962776x57=78.5398163397448x58=−64.410411962776x59=−39.2826357527234x60=−23.5831433102848x61=87.9645943005142x62=12.5663706143592x63=26.7222463741877x64=−4.81584231784594x65=73.8341991854591x66=−37.6991118430775x67=−95.8237937978449x68=59.6902604182061x69=43.9822971502571x70=70.692907433161x71=−50.2654824574367x72=37.6991118430775x73=14.1724320747999x74=92.682377997352x75=−59.6902604182061x76=−105.248104538899x77=−75.398223686155x78=29.861872403816x79=67.5516436614121x80=86.3995849739529x81=34.5575191894877x82=−17.3076405374146x83=45.5640665961997x84=−94.2477796076938x85=−7.91705268466621x86=20.4448034666183x87=−31.4159265358979x88=36.1421488970061The values of the extrema at the points:
(-97.3893722612836, -4.58542475390885e-27)
(-43.982297150257104, -1.29287245613476e-28)
(278.0327481900649, 278.031849018319)
(-45.56406659619972, -45.5585804770373)
(56.548667764616276, 2.7478251327179e-28)
(-14.172432074799941, -14.1548141232633)
(-73.83419918545908, -73.8308133759219)
(28.274333882308138, 3.43478141589738e-29)
(-81.68140899333463, -1.25601110053315e-27)
(-15.707963267948966, -5.8895428941999e-30)
(72.25663103256524, 2.93139900017185e-27)
(48.70495166667517, 48.6998192592491)
(-80.11685346965491, -80.1137331491182)
(95.82379379784489, 95.8211849135206)
(-29.861872403816044, -29.853502870657)
(89.54097460498406, 89.5381826741839)
(-53.40707511102649, -1.15535214562331e-28)
(25.132741228718345, 2.41235676946428e-29)
(100.53096491487338, 1.54390833245714e-27)
(-9.42477796076938, -1.27214126514718e-30)
(81.68140899333463, 1.25601110053315e-27)
(-83.25821066164869, -83.255208063081)
(-21.991148575128552, -1.61609057016845e-29)
(1.8365972031521258, 1.70986852923209)
(80.11685346965491, 80.1137331491182)
(-20.4448034666183, -20.4325827297121)
(-58.12806557615112, -58.1237650459065)
(-72.25663103256524, -2.93139900017185e-27)
(15.707963267948966, 5.8895428941999e-30)
(50.26548245743669, 1.92988541557142e-28)
(-28.274333882308138, -3.43478141589738e-29)
(-6.283185307179586, -3.76930745228793e-31)
(23.583143310284843, 23.5725472811462)
(3.141592653589793, 4.71163431535992e-32)
(-306.30691607324667, -306.306099900576)
(-84.82300164692441, -3.99087542625273e-27)
(-86.3995849739529, -86.3966915384367)
(42.423286257700816, 42.4173940862181)
(-51.84592244522343, -51.8411009136761)
(51.84592244522343, 51.8411009136761)
(-36.142148897006074, -36.135233089007)
(-87.96459430051421, -1.03429796490781e-27)
(-42.423286257700816, -42.4173940862181)
(58.12806557615112, 58.1237650459065)
(-61.269217268722585, -61.2651371880071)
(0, 0)
(-1.8365972031521258, -1.70986852923209)
(-65.97344572538566, -6.34844983898999e-29)
(-89.54097460498406, -89.5381826741839)
(-67.5516436614121, -67.5479429919577)
(6.283185307179586, 3.76930745228793e-31)
(94.2477796076938, 1.10977728956951e-27)
(65.97344572538566, 6.34844983898999e-29)
(7.917052684666207, 7.88560072412753)
(21.991148575128552, 1.61609057016845e-29)
(64.41041196277601, 64.4065308365988)
(78.53981633974483, 1.8941914820334e-29)
(-64.41041196277601, -64.4065308365988)
(-39.282635752723394, -39.2762726485285)
(-23.583143310284843, -23.5725472811462)
(87.96459430051421, 1.03429796490781e-27)
(12.566370614359172, 3.01544596183035e-30)
(26.72224637418772, 26.7128941475173)
(-4.815842317845935, -4.76448393290203)
(73.83419918545908, 73.8308133759219)
(-37.69911184307752, -8.14170409694193e-29)
(-95.82379379784489, -95.8211849135206)
(59.69026041820607, 8.97021321364436e-29)
(43.982297150257104, 1.29287245613476e-28)
(70.692907433161, 70.6893711873986)
(-50.26548245743669, -1.92988541557142e-28)
(37.69911184307752, 8.14170409694193e-29)
(14.172432074799941, 14.1548141232633)
(92.68237799735202, 92.6796806914592)
(-59.69026041820607, -8.97021321364436e-29)
(-105.24810453889911, -105.245729252817)
(-75.39822368615503, -6.51336327755355e-28)
(29.861872403816044, 29.853502870657)
(67.5516436614121, 67.5479429919577)
(86.3995849739529, 86.3966915384367)
(34.55751918948773, 1.68111309202325e-28)
(-17.307640537414635, -17.2932080946897)
(45.56406659619972, 45.5585804770373)
(-94.2477796076938, -1.10977728956951e-27)
(-7.917052684666207, -7.88560072412753)
(20.4448034666183, 20.4325827297121)
(-31.41592653589793, -4.71163431535992e-29)
(36.142148897006074, 36.135233089007)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−45.5640665961997x2=56.5486677646163x3=−14.1724320747999x4=−73.8341991854591x5=28.2743338823081x6=72.2566310325652x7=−80.1168534696549x8=−29.861872403816x9=25.1327412287183x10=100.530964914873x11=81.6814089933346x12=−83.2582106616487x13=−20.4448034666183x14=−58.1280655761511x15=15.707963267949x16=50.2654824574367x17=3.14159265358979x18=−306.306916073247x19=−86.3995849739529x20=−51.8459224452234x21=−36.1421488970061x22=−42.4232862577008x23=−61.2692172687226x24=−1.83659720315213x25=−89.5409746049841x26=−67.5516436614121x27=6.28318530717959x28=94.2477796076938x29=65.9734457253857x30=21.9911485751286x31=78.5398163397448x32=−64.410411962776x33=−39.2826357527234x34=−23.5831433102848x35=87.9645943005142x36=12.5663706143592x37=−4.81584231784594x38=−95.8237937978449x39=59.6902604182061x40=43.9822971502571x41=37.6991118430775x42=−105.248104538899x43=34.5575191894877x44=−17.3076405374146x45=−7.91705268466621Maxima of the function at points:
x45=−97.3893722612836x45=−43.9822971502571x45=278.032748190065x45=−81.6814089933346x45=−15.707963267949x45=48.7049516666752x45=95.8237937978449x45=89.5409746049841x45=−53.4070751110265x45=−9.42477796076938x45=−21.9911485751286x45=1.83659720315213x45=80.1168534696549x45=−72.2566310325652x45=−28.2743338823081x45=−6.28318530717959x45=23.5831433102848x45=−84.8230016469244x45=42.4232862577008x45=51.8459224452234x45=−87.9645943005142x45=58.1280655761511x45=−65.9734457253857x45=7.91705268466621x45=64.410411962776x45=26.7222463741877x45=73.8341991854591x45=−37.6991118430775x45=70.692907433161x45=−50.2654824574367x45=14.1724320747999x45=92.682377997352x45=−59.6902604182061x45=−75.398223686155x45=29.861872403816x45=67.5516436614121x45=86.3995849739529x45=45.5640665961997x45=−94.2477796076938x45=20.4448034666183x45=−31.4159265358979x45=36.1421488970061Decreasing at intervals
[100.530964914873,∞)Increasing at intervals
(−∞,−306.306916073247]