Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}} + \frac{\sqrt{x + 1} \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right) \left(x + 2\right)} - \frac{2 x - 1}{\left(x - 3\right) \sqrt{x + 1} \left(x + 2\right)}}{\left(x - 3\right) \left(x + 2\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{1}{2} - \frac{\sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}{2} + \frac{\sqrt{- \frac{34}{5} - 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}} - \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + \frac{8}{5 \sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}}}{2}$$
$$x_{2} = - \frac{\sqrt{- \frac{34}{5} - 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}} - \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + \frac{8}{5 \sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}}}{2} - \frac{1}{2} - \frac{\sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}{2}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -2$$
$$x_{2} = 3$$
$$\lim_{x \to -2^-}\left(\frac{- \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}} + \frac{\sqrt{x + 1} \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right) \left(x + 2\right)} - \frac{2 x - 1}{\left(x - 3\right) \sqrt{x + 1} \left(x + 2\right)}}{\left(x - 3\right) \left(x + 2\right)}\right) = \infty i$$
$$\lim_{x \to -2^+}\left(\frac{- \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}} + \frac{\sqrt{x + 1} \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right) \left(x + 2\right)} - \frac{2 x - 1}{\left(x - 3\right) \sqrt{x + 1} \left(x + 2\right)}}{\left(x - 3\right) \left(x + 2\right)}\right) = - \infty i$$
- the limits are not equal, so
$$x_{1} = -2$$
- is an inflection point
$$\lim_{x \to 3^-}\left(\frac{- \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}} + \frac{\sqrt{x + 1} \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right) \left(x + 2\right)} - \frac{2 x - 1}{\left(x - 3\right) \sqrt{x + 1} \left(x + 2\right)}}{\left(x - 3\right) \left(x + 2\right)}\right) = -\infty$$
$$\lim_{x \to 3^+}\left(\frac{- \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}} + \frac{\sqrt{x + 1} \left(\left(2 x - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 3}\right) - 2 + \frac{2 x - 1}{x + 2} + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right) \left(x + 2\right)} - \frac{2 x - 1}{\left(x - 3\right) \sqrt{x + 1} \left(x + 2\right)}}{\left(x - 3\right) \left(x + 2\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 3$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{1}{2} - \frac{\sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}{2} + \frac{\sqrt{- \frac{34}{5} - 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}} - \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + \frac{8}{5 \sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}}}{2}\right]$$
Convex at the intervals
$$\left[- \frac{1}{2} - \frac{\sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}{2} + \frac{\sqrt{- \frac{34}{5} - 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}} - \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + \frac{8}{5 \sqrt{- \frac{17}{5} + \frac{49}{450 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}} + 2 \sqrt[3]{\frac{4 \sqrt{158285}}{675} + \frac{7073}{3000}}}}}}{2}, \infty\right)$$