Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{x + 1}{\left(2 x + 5\right)^{3}} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = -1$$
Numerical solution$$x_{1} = -447953.841134282$$
$$x_{2} = -407515.182179879$$
$$x_{3} = 381276.517049048$$
$$x_{4} = -1$$
$$x_{5} = -336750.564460319$$
$$x_{6} = 512701.416451934$$
$$x_{7} = -377186.929715713$$
$$x_{8} = 441932.764787277$$
$$x_{9} = 462152.106470685$$
$$x_{10} = -397405.685319027$$
$$x_{11} = -437844.084731016$$
$$x_{12} = 492481.545850644$$
$$x_{13} = 421713.690083804$$
$$x_{14} = 401494.923941332$$
$$x_{15} = 330732.520269353$$
$$x_{16} = 411604.265514848$$
$$x_{17} = 320624.15805838$$
$$x_{18} = -367077.683686267$$
$$x_{19} = -488393.379005045$$
$$x_{20} = -316533.09602277$$
$$x_{21} = -356968.535142638$$
$$x_{22} = -387296.265819531$$
$$x_{23} = 391385.671998678$$
$$x_{24} = 371167.467283641$$
$$x_{25} = 431823.191651997$$
$$x_{26} = -468173.51409396$$
$$x_{27} = -346859.492332346$$
$$x_{28} = 502591.458730685$$
$$x_{29} = -326641.761831977$$
$$x_{30} = 452042.404556745$$
$$x_{31} = -458063.652070929$$
$$x_{32} = 350949.720957482$$
$$x_{33} = 472261.866433881$$
$$x_{34} = -478283.424040903$$
$$x_{35} = -417624.750936249$$
$$x_{36} = 482371.68070322$$
$$x_{37} = -427734.386625381$$
$$x_{38} = 522811.416351896$$
$$x_{39} = 361058.531842778$$
$$x_{40} = 340841.046117185$$