Mister Exam

Graphing y = x*1

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = x*1
f(x)=x1f{\left(x \right)} = x 1
f = x*1
The graph of the function
02468-8-6-4-2-1010-2020
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
x1=0x 1 = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=0x_{1} = 0
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to x*1.
010 \cdot 1
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
1=01 = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
0=00 = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(x1)=\lim_{x \to -\infty}\left(x 1\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(x1)=\lim_{x \to \infty}\left(x 1\right) = \infty
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x*1, divided by x at x->+oo and x ->-oo
limx1=1\lim_{x \to -\infty} 1 = 1
Let's take the limit
so,
inclined asymptote equation on the left:
y=xy = x
limx1=1\lim_{x \to \infty} 1 = 1
Let's take the limit
so,
inclined asymptote equation on the right:
y=xy = x
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
x1=xx 1 = - x
- No
x1=xx 1 = x
- No
so, the function
not is
neither even, nor odd
The graph
Graphing y = x*1