Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • x^3+x^2-x-2
  • x^3-8x
  • -x^2+2x-2
  • -(x-2)^2-7
  • Identical expressions

  • x*exp(one)^((-x)/ two)
  • x multiply by exponent of (1) to the power of (( minus x) divide by 2)
  • x multiply by exponent of (one) to the power of (( minus x) divide by two)
  • x*exp(1)((-x)/2)
  • x*exp1-x/2
  • xexp(1)^((-x)/2)
  • xexp(1)((-x)/2)
  • xexp1-x/2
  • xexp1^-x/2
  • x*exp(1)^((-x) divide by 2)
  • Similar expressions

  • x*exp(1)^((x)/2)

Graphing y = x*exp(1)^((-x)/2)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
             -x 
             ---
              2 
         / 1\   
f(x) = x*\e /   
f(x)=x(e1)(1)x2f{\left(x \right)} = x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}}
f = x*exp(1)^((-x)/2)
The graph of the function
02468-8-6-4-2-1010-20002000
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
x(e1)(1)x2=0x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=75.9582278615682x_{1} = 75.9582278615682
x2=123.067540388527x_{2} = 123.067540388527
x3=105.268425321898x_{3} = 105.268425321898
x4=121.08599800789x_{4} = 121.08599800789
x5=113.168557011776x_{5} = 113.168557011776
x6=107.241540269193x_{6} = 107.241540269193
x7=103.296764962881x_{7} = 103.296764962881
x8=95.427382421153x_{8} = 95.427382421153
x9=127.032867683997x_{9} = 127.032867683997
x10=129.016562623174x_{10} = 129.016562623174
x11=93.4651859652441x_{11} = 93.4651859652441
x12=117.125411922138x_{12} = 117.125411922138
x13=74.0392717219567x_{13} = 74.0392717219567
x14=115.146485250814x_{14} = 115.146485250814
x15=119.105269897573x_{15} = 119.105269897573
x16=99.3583181793708x_{16} = 99.3583181793708
x17=136.957325310529x_{17} = 136.957325310529
x18=66.4634017838308x_{18} = 66.4634017838308
x19=70.2278341185476x_{19} = 70.2278341185476
x20=97.3918261051326x_{20} = 97.3918261051326
x21=0x_{21} = 0
x22=87.5945090232618x_{22} = 87.5945090232618
x23=85.6439180738776x_{23} = 85.6439180738776
x24=91.5054628829366x_{24} = 91.5054628829366
x25=77.8843596511898x_{25} = 77.8843596511898
x26=64.605232251426x_{26} = 64.605232251426
x27=111.191701047147x_{27} = 111.191701047147
x28=142.918298209055x_{28} = 142.918298209055
x29=101.326683040058x_{29} = 101.326683040058
x30=109.215998787545x_{30} = 109.215998787545
x31=132.985816431156x_{31} = 132.985816431156
x32=68.3386317231503x_{32} = 68.3386317231503
x33=79.816716308387x_{33} = 79.816716308387
x34=81.7545134822841x_{34} = 81.7545134822841
x35=134.971304934036x_{35} = 134.971304934036
x36=83.6970973965431x_{36} = 83.6970973965431
x37=77.5601992651609x_{37} = 77.5601992651609
x38=138.943848589893x_{38} = 138.943848589893
x39=140.930847885457x_{39} = 140.930847885457
x40=125.04984591054x_{40} = 125.04984591054
x41=131.000891064693x_{41} = 131.000891064693
x42=89.5484716110773x_{42} = 89.5484716110773
x43=72.1286573308603x_{43} = 72.1286573308603
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to x*exp(1)^((-x)/2).
0(e1)(1)020 \left(e^{1}\right)^{\frac{\left(-1\right) 0}{2}}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
xe(1)x22+(e1)(1)x2=0- \frac{x e^{\frac{\left(-1\right) x}{2}}}{2} + \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}} = 0
Solve this equation
The roots of this equation
x1=2x_{1} = 2
The values of the extrema at the points:
       -1 
(2, 2*e  )


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
Maxima of the function at points:
x1=2x_{1} = 2
Decreasing at intervals
(,2]\left(-\infty, 2\right]
Increasing at intervals
[2,)\left[2, \infty\right)
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
(x41)ex2=0\left(\frac{x}{4} - 1\right) e^{- \frac{x}{2}} = 0
Solve this equation
The roots of this equation
x1=4x_{1} = 4

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[4,)\left[4, \infty\right)
Convex at the intervals
(,4]\left(-\infty, 4\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(x(e1)(1)x2)=\lim_{x \to -\infty}\left(x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}}\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(x(e1)(1)x2)=0\lim_{x \to \infty}\left(x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}}\right) = 0
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=0y = 0
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x*exp(1)^((-x)/2), divided by x at x->+oo and x ->-oo
limxe(1)x2=\lim_{x \to -\infty} e^{\frac{\left(-1\right) x}{2}} = \infty
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
limxe(1)x2=0\lim_{x \to \infty} e^{\frac{\left(-1\right) x}{2}} = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
x(e1)(1)x2=xex2x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}} = - x e^{\frac{x}{2}}
- No
x(e1)(1)x2=xex2x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}} = x e^{\frac{x}{2}}
- No
so, the function
not is
neither even, nor odd