Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$x \left(e^{1}\right)^{\frac{\left(-1\right) x}{2}} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = 75.9582278615682$$
$$x_{2} = 123.067540388527$$
$$x_{3} = 105.268425321898$$
$$x_{4} = 121.08599800789$$
$$x_{5} = 113.168557011776$$
$$x_{6} = 107.241540269193$$
$$x_{7} = 103.296764962881$$
$$x_{8} = 95.427382421153$$
$$x_{9} = 127.032867683997$$
$$x_{10} = 129.016562623174$$
$$x_{11} = 93.4651859652441$$
$$x_{12} = 117.125411922138$$
$$x_{13} = 74.0392717219567$$
$$x_{14} = 115.146485250814$$
$$x_{15} = 119.105269897573$$
$$x_{16} = 99.3583181793708$$
$$x_{17} = 136.957325310529$$
$$x_{18} = 66.4634017838308$$
$$x_{19} = 70.2278341185476$$
$$x_{20} = 97.3918261051326$$
$$x_{21} = 0$$
$$x_{22} = 87.5945090232618$$
$$x_{23} = 85.6439180738776$$
$$x_{24} = 91.5054628829366$$
$$x_{25} = 77.8843596511898$$
$$x_{26} = 64.605232251426$$
$$x_{27} = 111.191701047147$$
$$x_{28} = 142.918298209055$$
$$x_{29} = 101.326683040058$$
$$x_{30} = 109.215998787545$$
$$x_{31} = 132.985816431156$$
$$x_{32} = 68.3386317231503$$
$$x_{33} = 79.816716308387$$
$$x_{34} = 81.7545134822841$$
$$x_{35} = 134.971304934036$$
$$x_{36} = 83.6970973965431$$
$$x_{37} = 77.5601992651609$$
$$x_{38} = 138.943848589893$$
$$x_{39} = 140.930847885457$$
$$x_{40} = 125.04984591054$$
$$x_{41} = 131.000891064693$$
$$x_{42} = 89.5484716110773$$
$$x_{43} = 72.1286573308603$$