In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- \frac{x}{x^{2} + 1} + \operatorname{acot}{\left(x \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -34688.5704142599$$
$$x_{2} = 33972.2501557217$$
$$x_{3} = -27060.8125814987$$
$$x_{4} = -20281.012992025$$
$$x_{5} = 22107.1135839482$$
$$x_{6} = -30450.8850969459$$
$$x_{7} = 15327.9550113123$$
$$x_{8} = 39057.5547154358$$
$$x_{9} = -16044.0821523617$$
$$x_{10} = -10113.913790961$$
$$x_{11} = -42316.5735052903$$
$$x_{12} = -36383.6664480288$$
$$x_{13} = -24518.3207010738$$
$$x_{14} = -35536.1170902848$$
$$x_{15} = -12655.0631680385$$
$$x_{16} = 37362.4434906472$$
$$x_{17} = -8420.37201352502$$
$$x_{18} = 8551.45303022722$$
$$x_{19} = 38209.9980244722$$
$$x_{20} = 11092.020896022$$
$$x_{21} = -32145.9485975863$$
$$x_{22} = 27192.0307619732$$
$$x_{23} = 13633.4257117535$$
$$x_{24} = -41469.0097027937$$
$$x_{25} = 10245.0412006996$$
$$x_{26} = 28039.5419336107$$
$$x_{27} = 22954.5779890773$$
$$x_{28} = 28887.0585662606$$
$$x_{29} = -18586.1809993501$$
$$x_{30} = 35667.3415095204$$
$$x_{31} = -16891.4245591221$$
$$x_{32} = -21975.9030580391$$
$$x_{33} = -9267.06673722176$$
$$x_{34} = -11807.9338157736$$
$$x_{35} = 12786.2285767811$$
$$x_{36} = 42447.8004663952$$
$$x_{37} = 16175.2730314267$$
$$x_{38} = -23670.8387235676$$
$$x_{39} = 23802.0523520614$$
$$x_{40} = -26213.3083727677$$
$$x_{41} = -19433.5887869564$$
$$x_{42} = -27908.3228655288$$
$$x_{43} = -39773.8872675524$$
$$x_{44} = 17869.99050832$$
$$x_{45} = -32993.4859340089$$
$$x_{46} = -38926.3288599295$$
$$x_{47} = -22823.365825763$$
$$x_{48} = -17738.7919818582$$
$$x_{49} = 33124.7089739066$$
$$x_{50} = 19564.7930550097$$
$$x_{51} = 26344.5255783821$$
$$x_{52} = 31429.6368125843$$
$$x_{53} = 14480.6704897809$$
$$x_{54} = 36514.8912641685$$
$$x_{55} = 34819.7944072015$$
$$x_{56} = -31298.4148843908$$
$$x_{57} = -10960.8778764425$$
$$x_{58} = -40621.447587593$$
$$x_{59} = 18717.3825921039$$
$$x_{60} = 41600.2364126928$$
$$x_{61} = 24649.5356458528$$
$$x_{62} = -28755.8386877142$$
$$x_{63} = 32277.1711035644$$
$$x_{64} = -33841.0266214391$$
$$x_{65} = 40752.6740304247$$
$$x_{66} = -25365.810848258$$
$$x_{67} = 17022.6195482377$$
$$x_{68} = -13502.2521178288$$
$$x_{69} = -21128.451639271$$
$$x_{70} = 9398.17409812154$$
$$x_{71} = 20412.2196081348$$
$$x_{72} = 29734.5801929714$$
$$x_{73} = 25497.0269799384$$
$$x_{74} = -14349.4901108771$$
$$x_{75} = -38078.7724924216$$
$$x_{76} = 11939.0892257274$$
$$x_{77} = -15196.7689456217$$
$$x_{78} = -29603.3595724168$$
$$x_{79} = 21259.6603274632$$
$$x_{80} = -37231.2183043527$$
$$x_{81} = 30582.10639855$$
$$x_{82} = 39905.113426091$$
The values of the extrema at the points:
(-34688.570414259906, 0.999999999722983)
(33972.25015572168, 0.999999999711178)
(-27060.81258149867, 0.999999999544805)
(-20281.012992024975, 0.9999999991896)
(22107.113583948245, 0.999999999317952)
(-30450.88509694595, 0.999999999640517)
(15327.955011312279, 0.999999998581235)
(39057.55471543576, 0.999999999781491)
(-16044.082152361707, 0.999999998705062)
(-10113.913790961042, 0.999999996741331)
(-42316.573505290275, 0.999999999813852)
(-36383.66644802879, 0.999999999748194)
(-24518.320701073833, 0.999999999445505)
(-35536.11709028476, 0.99999999973604)
(-12655.063168038458, 0.999999997918626)
(37362.44349064715, 0.999999999761214)
(-8420.37201352502, 0.999999995298719)
(8551.453030227216, 0.999999995441742)
(38209.99802447215, 0.99999999977169)
(11092.020896021957, 0.999999997290698)
(-32145.948597586266, 0.999999999677428)
(27192.03076197315, 0.999999999549188)
(13633.425711753476, 0.999999998206635)
(-41469.00970279369, 0.999999999806165)
(10245.041200699563, 0.999999996824213)
(28039.541933610733, 0.999999999576028)
(22954.57798907731, 0.999999999367384)
(28887.058566260628, 0.999999999600541)
(-18586.180999350086, 0.999999999035064)
(35667.3415095204, 0.999999999737978)
(-16891.424559122082, 0.999999998831722)
(-21975.903058039054, 0.999999999309784)
(-9267.06673722176, 0.999999996118549)
(-11807.933815773578, 0.999999997609268)
(12786.228576781117, 0.99999999796111)
(42447.8004663952, 0.999999999815001)
(16175.273031426721, 0.999999998725982)
(-23670.838723567595, 0.99999999940509)
(23802.052352061375, 0.999999999411631)
(-26213.308372767653, 0.999999999514896)
(-19433.58878695641, 0.999999999117382)
(-27908.322865528775, 0.999999999572032)
(-39773.887267552374, 0.999999999789291)
(17869.990508320032, 0.999999998956169)
(-32993.48593400886, 0.999999999693788)
(-38926.32885992955, 0.999999999780016)
(-22823.365825763038, 0.999999999360089)
(-17738.791981858223, 0.999999998940671)
(33124.7089739066, 0.999999999696209)
(19564.79305500968, 0.99999999912918)
(26344.525578382065, 0.999999999519716)
(31429.636812584253, 0.999999999662557)
(14480.670489780925, 0.99999999841035)
(36514.89126416845, 0.999999999750001)
(34819.79440720148, 0.999999999725067)
(-31298.41488439077, 0.999999999659722)
(-10960.87787644252, 0.999999997225479)
(-40621.447587593044, 0.999999999797992)
(18717.38259210387, 0.999999999048545)
(41600.23641269277, 0.999999999807386)
(24649.53564585282, 0.999999999451393)
(-28755.838687714244, 0.999999999596887)
(32277.171103564393, 0.999999999680046)
(-33841.02662143908, 0.999999999708934)
(40752.67403042468, 0.999999999799291)
(-25365.810848258036, 0.999999999481939)
(17022.619548237748, 0.999999998849661)
(-13502.25211782884, 0.999999998171621)
(-21128.451639271025, 0.999999999253305)
(9398.174098121537, 0.999999996226088)
(20412.219608134823, 0.999999999199985)
(29734.580192971367, 0.999999999622988)
(25497.02697993837, 0.999999999487257)
(-14349.490110877094, 0.999999998381153)
(-38078.77249242158, 0.999999999770114)
(11939.089225727435, 0.999999997661506)
(-15196.768945621745, 0.999999998556635)
(-29603.35957241684, 0.999999999619638)
(21259.66032746322, 0.999999999262493)
(-37231.21830435275, 0.999999999759528)
(30582.106398549957, 0.999999999643595)
(39905.113426091, 0.999999999790675)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = -42316.5735052903$$
$$x_{2} = -26213.3083727677$$
$$x_{3} = -32993.4859340089$$
$$x_{4} = -22823.365825763$$
$$x_{5} = 31429.6368125843$$
$$x_{6} = 14480.6704897809$$
$$x_{7} = -40621.447587593$$
$$x_{8} = 24649.5356458528$$
$$x_{9} = 32277.1711035644$$
$$x_{10} = 40752.6740304247$$
$$x_{11} = 17022.6195482377$$
$$x_{12} = 25497.0269799384$$
$$x_{13} = -14349.4901108771$$
$$x_{14} = -38078.7724924216$$
Maxima of the function at points:
$$x_{14} = 22107.1135839482$$
$$x_{14} = 39057.5547154358$$
$$x_{14} = -16044.0821523617$$
$$x_{14} = 37362.4434906472$$
$$x_{14} = 38209.9980244722$$
$$x_{14} = -32145.9485975863$$
$$x_{14} = 10245.0412006996$$
$$x_{14} = -16891.4245591221$$
$$x_{14} = 34819.7944072015$$
$$x_{14} = 18717.3825921039$$
$$x_{14} = 11939.0892257274$$
$$x_{14} = -37231.2183043527$$
Decreasing at intervals
$$\left[40752.6740304247, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -42316.5735052903\right]$$