Mister Exam

Other calculators

Graphing y = (x-2)*cos(x)-1

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = (x - 2)*cos(x) - 1
f(x)=(x2)cos(x)1f{\left(x \right)} = \left(x - 2\right) \cos{\left(x \right)} - 1
f = (x - 2)*cos(x) - 1
The graph of the function
02468-8-6-4-2-1010-2020
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
(x2)cos(x)1=0\left(x - 2\right) \cos{\left(x \right)} - 1 = 0
Solve this equation
The points of intersection with the axis X:

Numerical solution
x1=83.2398957861884x_{1} = 83.2398957861884
x2=70.6712720609268x_{2} = 70.6712720609268
x3=95.8079156513603x_{3} = 95.8079156513603
x4=76.9816815149623x_{4} = -76.9816815149623
x5=32.9544116679545x_{5} = 32.9544116679545
x6=58.13609380627x_{6} = -58.13609380627
x7=86.3824832731094x_{7} = -86.3824832731094
x8=95.8287980514462x_{8} = -95.8287980514462
x9=29.8810046168397x_{9} = 29.8810046168397
x10=86.4056457996091x_{10} = 86.4056457996091
x11=98.950262557824x_{11} = -98.950262557824
x12=4.55933773490524x_{12} = -4.55933773490524
x13=89.5239649365421x_{13} = 89.5239649365421
x14=23.6082400788061x_{14} = 23.6082400788061
x15=73.8413473696577x_{15} = 73.8413473696577
x16=39.2941270561176x_{16} = -39.2941270561176
x17=83.2639338773448x_{17} = -83.2639338773448
x18=36.1020672071621x_{18} = -36.1020672071621
x19=1.83462794472422x_{19} = -1.83462794472422
x20=36.1575957651034x_{20} = 36.1575957651034
x21=114.659255415931x_{21} = 114.659255415931
x22=67.5298592461575x_{22} = -67.5298592461575
x23=45.5741148592996x_{23} = -45.5741148592996
x24=5.04680031697879x_{24} = 5.04680031697879
x25=17.3439779664159x_{25} = 17.3439779664159
x26=76.9556783997672x_{26} = 76.9556783997672
x27=92.6664196765929x_{27} = -92.6664196765929
x28=73.8142368421099x_{28} = -73.8142368421099
x29=98.9704811874688x_{29} = 98.9704811874688
x30=26.6629798364534x_{30} = 26.6629798364534
x31=23.5227541458611x_{31} = -23.5227541458611
x32=61.2452446206625x_{32} = -61.2452446206625
x33=51.854848281784x_{33} = -51.854848281784
x34=48.6749512342163x_{34} = -48.6749512342163
x35=7.67690537223213x_{35} = 7.67690537223213
x36=42.4362336402772x_{36} = 42.4362336402772
x37=45.5301188561712x_{37} = 45.5301188561712
x38=14.0541122469744x_{38} = 14.0541122469744
x39=92.6880103203354x_{39} = 92.6880103203354
x40=42.3889707988334x_{40} = -42.3889707988334
x41=20.464880886083x_{41} = -20.464880886083
x42=29.8136920237823x_{42} = -29.8136920237823
x43=48.7160936650918x_{43} = 48.7160936650918
x44=70.6995903752582x_{44} = -70.6995903752582
x45=39.2430542982617x_{45} = 39.2430542982617
x46=10.9180859158898x_{46} = -10.9180859158898
x47=54.99674164227x_{47} = 54.99674164227
x48=33.0152857021933x_{48} = -33.0152857021933
x49=64.386619633992x_{49} = 64.386619633992
x50=11.105618557374x_{50} = 11.105618557374
x51=51.8162036460538x_{51} = 51.8162036460538
x52=64.4177061935755x_{52} = -64.4177061935755
x53=80.0984318647099x_{53} = -80.0984318647099
x54=20.3658765051196x_{54} = 20.3658765051196
x55=80.1234132760863x_{55} = 80.1234132760863
x56=14.1989386573065x_{56} = -14.1989386573065
x57=58.1016383560005x_{57} = 58.1016383560005
x58=67.5594959641677x_{58} = 67.5594959641677
x59=54.9603144529966x_{59} = -54.9603144529966
x60=7.95460735922755x_{60} = -7.95460735922755
x61=17.2267251792801x_{61} = -17.2267251792801
x62=89.5463142772218x_{62} = -89.5463142772218
x63=61.2779272309279x_{63} = 61.2779272309279
x64=26.7383413008481x_{64} = -26.7383413008481
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (x - 2)*cos(x) - 1.
2cos(0)1- 2 \cos{\left(0 \right)} - 1
The result:
f(0)=3f{\left(0 \right)} = -3
The point:
(0, -3)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
(x2)sin(x)+cos(x)=0- \left(x - 2\right) \sin{\left(x \right)} + \cos{\left(x \right)} = 0
Solve this equation
The roots of this equation
x1=31.4498695022248x_{1} = 31.4498695022248
x2=3.67881386877315x_{2} = 3.67881386877315
x3=94.2581679627629x_{3} = -94.2581679627629
x4=81.6939563377856x_{4} = 81.6939563377856
x5=59.707587427833x_{5} = 59.707587427833
x6=56.565740934319x_{6} = -56.565740934319
x7=40.8640298498727x_{7} = -40.8640298498727
x8=9.51143060086678x_{8} = -9.51143060086678
x9=65.9881531096995x_{9} = -65.9881531096995
x10=1.78375866918844x_{10} = 1.78375866918844
x11=72.2700945885545x_{11} = -72.2700945885545
x12=62.8482859091507x_{12} = 62.8482859091507
x13=0.395463310223558x_{13} = -0.395463310223558
x14=31.4458167365799x_{14} = -31.4458167365799
x15=9.55635238563905x_{15} = 9.55635238563905
x16=28.3123206099473x_{16} = 28.3123206099473
x17=100.541112615137x_{17} = 100.541112615137
x18=62.8472726985923x_{18} = -62.8472726985923
x19=53.4251155156868x_{19} = -53.4251155156868
x20=81.6933568044194x_{20} = -81.6933568044194
x21=37.72428004861x_{21} = -37.72428004861
x22=94.2586182790224x_{22} = 94.2586182790224
x23=37.7270944985589x_{23} = 37.7270944985589
x24=47.1442352627113x_{24} = -47.1442352627113
x25=91.1169257274417x_{25} = -91.1169257274417
x26=40.8664279674596x_{26} = 40.8664279674596
x27=28.307317248383x_{27} = -28.307317248383
x28=3.3271508114264x_{28} = -3.3271508114264
x29=91.1174076354308x_{29} = 91.1174076354308
x30=69.1290963970556x_{30} = -69.1290963970556
x31=75.4118446237714x_{31} = 75.4118446237714
x32=100.54071682934x_{32} = -100.54071682934
x33=44.0040309531782x_{33} = -44.0040309531782
x34=44.0060987215772x_{34} = 44.0060987215772
x35=25.1695305580579x_{35} = -25.1695305580579
x36=15.7641969219382x_{36} = -15.7641969219382
x37=78.5528784628996x_{37} = 78.5528784628996
x38=75.4111410048686x_{38} = -75.4111410048686
x39=34.5881955213684x_{39} = 34.5881955213684
x40=72.2708607217157x_{40} = 72.2708607217157
x41=65.9890721217494x_{41} = 65.9890721217494
x42=69.1299337614882x_{42} = 69.1299337614882
x43=47.1460365210195x_{43} = 47.1460365210195
x44=84.8345172956245x_{44} = -84.8345172956245
x45=87.9757079538691x_{45} = -87.9757079538691
x46=56.5669918107247x_{46} = 56.5669918107247
x47=6.50177094567593x_{47} = 6.50177094567593
x48=97.3994323415189x_{48} = -97.3994323415189
x49=22.0327344991331x_{49} = -22.0327344991331
x50=34.5848461068827x_{50} = -34.5848461068827
x51=84.8350732415513x_{51} = 84.8350732415513
x52=53.4265178816223x_{52} = 53.4265178816223
x53=6.40165218273828x_{53} = -6.40165218273828
x54=22.041004922887x_{54} = 22.041004922887
x55=97.3998540737208x_{55} = 97.3998540737208
x56=25.1758628206516x_{56} = 25.1758628206516
x57=18.8973723517571x_{57} = -18.8973723517571
x58=18.9086285150365x_{58} = 18.9086285150365
x59=50.2846062141866x_{59} = -50.2846062141866
x60=50.2861893528066x_{60} = 50.2861893528066
x61=12.6345957962324x_{61} = -12.6345957962324
x62=59.7064647571766x_{62} = -59.7064647571766
x63=15.7804031090056x_{63} = 15.7804031090056
x64=87.9762248985139x_{64} = 87.9762248985139
x65=12.6599063318801x_{65} = 12.6599063318801
x66=78.5522300076593x_{66} = -78.5522300076593
The values of the extrema at the points:
(31.449869502224804, 28.4329061660693)

(3.6788138687731515, -2.4423261437596)

(-94.25816796276293, -97.2529740187882)

(81.69395633778561, 78.6876830771009)

(59.70758742783301, -58.6989250067643)

(-56.565740934318995, -59.5572053862765)

(-40.86402984987269, 41.8523698171316)

(-9.511430600866776, 10.4682398119322)

(-65.98815310969954, 66.9808000803132)

(1.7837586691884353, -0.954296044655501)

(-72.27009458855454, 73.2633633189962)

(62.84828590915069, 59.840070414946)

(-0.3954633102235576, -3.2105770915696)

(-31.44581673657989, -34.4308771996032)

(9.556352385639048, -8.4910395497374)

(28.312320609947253, -27.2933386654907)

(100.5411126151373, 97.5360389827065)

(-62.84727269859232, -65.8395636489917)

(-53.42511551568677, 54.416096536549)

(-81.69335680441941, -84.6873832541994)

(-37.72428004860999, -40.7116992671584)

(94.25861827902244, 91.2531992086267)

(37.72709449855892, 34.7131077355865)

(-47.144235262711305, 48.1340642877963)

(-91.11692572744167, 92.1115565987741)

(40.86642796745955, -39.8535697780878)

(-28.30731724838301, 29.2908330407422)

(-3.327150811426404, 4.23570188454047)

(91.11740763543084, -90.1117975890844)

(-69.1290963970556, -72.1220679668166)

(75.41184462377139, 72.4050346814387)

(-100.54071682933989, -103.535841065316)

(-44.00403095317819, -46.9931661904766)

(44.00609872157723, 40.99420074504)

(-25.169530558057946, -28.151146266585)

(-15.764196921938192, 16.7361171391436)

(78.55287846289957, -77.5463478656221)

(-75.4111410048686, -78.4046827945409)

(34.58819552136843, -33.5728633693928)

(72.27086072171569, -71.2637464774058)

(65.98907212174937, -64.9812597185053)

(69.1299337614882, 66.1224867587443)

(47.14603652101946, -46.1349654254229)

(-84.83451729562454, 85.8287597894178)

(-87.97570795386915, -90.9701514131668)

(56.56699181072473, 53.5578310694696)

(6.5017709456759265, 3.3946518854198)

(-97.39943234151892, 98.3944025135118)

(-22.032734499133085, 23.0119565195799)

(-34.58484610688265, 35.5711868995092)

(84.83507324155133, -83.8290378107188)

(53.42651788162232, -52.4167980275174)

(-6.401652182738283, -9.34276502535275)

(22.041004922886987, -21.0161025655791)

(97.39985407372076, -96.3946134074225)

(25.175862820651595, 22.1543187289346)

(-18.897372351757102, -21.8734869122759)

(18.908628515036522, 15.8791351607143)

(-50.284606214186574, -53.2750457928642)

(50.286189352806645, 47.2758377548162)

(-12.634595796232404, -15.6005493587407)

(-59.70646475717664, 60.6983634741336)

(15.780403109005595, -14.7442623739808)

(87.97622489851388, 84.9704099272799)

(12.659906331880052, 9.61330893030344)

(-78.55223000765935, 79.5460235722291)


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=3.67881386877315x_{1} = 3.67881386877315
x2=94.2581679627629x_{2} = -94.2581679627629
x3=59.707587427833x_{3} = 59.707587427833
x4=56.565740934319x_{4} = -56.565740934319
x5=0.395463310223558x_{5} = -0.395463310223558
x6=31.4458167365799x_{6} = -31.4458167365799
x7=9.55635238563905x_{7} = 9.55635238563905
x8=28.3123206099473x_{8} = 28.3123206099473
x9=62.8472726985923x_{9} = -62.8472726985923
x10=81.6933568044194x_{10} = -81.6933568044194
x11=37.72428004861x_{11} = -37.72428004861
x12=40.8664279674596x_{12} = 40.8664279674596
x13=91.1174076354308x_{13} = 91.1174076354308
x14=69.1290963970556x_{14} = -69.1290963970556
x15=100.54071682934x_{15} = -100.54071682934
x16=44.0040309531782x_{16} = -44.0040309531782
x17=25.1695305580579x_{17} = -25.1695305580579
x18=78.5528784628996x_{18} = 78.5528784628996
x19=75.4111410048686x_{19} = -75.4111410048686
x20=34.5881955213684x_{20} = 34.5881955213684
x21=72.2708607217157x_{21} = 72.2708607217157
x22=65.9890721217494x_{22} = 65.9890721217494
x23=47.1460365210195x_{23} = 47.1460365210195
x24=87.9757079538691x_{24} = -87.9757079538691
x25=84.8350732415513x_{25} = 84.8350732415513
x26=53.4265178816223x_{26} = 53.4265178816223
x27=6.40165218273828x_{27} = -6.40165218273828
x28=22.041004922887x_{28} = 22.041004922887
x29=97.3998540737208x_{29} = 97.3998540737208
x30=18.8973723517571x_{30} = -18.8973723517571
x31=50.2846062141866x_{31} = -50.2846062141866
x32=12.6345957962324x_{32} = -12.6345957962324
x33=15.7804031090056x_{33} = 15.7804031090056
Maxima of the function at points:
x33=31.4498695022248x_{33} = 31.4498695022248
x33=81.6939563377856x_{33} = 81.6939563377856
x33=40.8640298498727x_{33} = -40.8640298498727
x33=9.51143060086678x_{33} = -9.51143060086678
x33=65.9881531096995x_{33} = -65.9881531096995
x33=1.78375866918844x_{33} = 1.78375866918844
x33=72.2700945885545x_{33} = -72.2700945885545
x33=62.8482859091507x_{33} = 62.8482859091507
x33=100.541112615137x_{33} = 100.541112615137
x33=53.4251155156868x_{33} = -53.4251155156868
x33=94.2586182790224x_{33} = 94.2586182790224
x33=37.7270944985589x_{33} = 37.7270944985589
x33=47.1442352627113x_{33} = -47.1442352627113
x33=91.1169257274417x_{33} = -91.1169257274417
x33=28.307317248383x_{33} = -28.307317248383
x33=3.3271508114264x_{33} = -3.3271508114264
x33=75.4118446237714x_{33} = 75.4118446237714
x33=44.0060987215772x_{33} = 44.0060987215772
x33=15.7641969219382x_{33} = -15.7641969219382
x33=69.1299337614882x_{33} = 69.1299337614882
x33=84.8345172956245x_{33} = -84.8345172956245
x33=56.5669918107247x_{33} = 56.5669918107247
x33=6.50177094567593x_{33} = 6.50177094567593
x33=97.3994323415189x_{33} = -97.3994323415189
x33=22.0327344991331x_{33} = -22.0327344991331
x33=34.5848461068827x_{33} = -34.5848461068827
x33=25.1758628206516x_{33} = 25.1758628206516
x33=18.9086285150365x_{33} = 18.9086285150365
x33=50.2861893528066x_{33} = 50.2861893528066
x33=59.7064647571766x_{33} = -59.7064647571766
x33=87.9762248985139x_{33} = 87.9762248985139
x33=12.6599063318801x_{33} = 12.6599063318801
x33=78.5522300076593x_{33} = -78.5522300076593
Decreasing at intervals
[97.3998540737208,)\left[97.3998540737208, \infty\right)
Increasing at intervals
(,100.54071682934]\left(-\infty, -100.54071682934\right]
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
((x2)cos(x)+2sin(x))=0- (\left(x - 2\right) \cos{\left(x \right)} + 2 \sin{\left(x \right)}) = 0
Solve this equation
The roots of this equation
x1=26.7729356960137x_{1} = -26.7729356960137
x2=76.9943328771542x_{2} = -76.9943328771542
x3=29.9077290516588x_{3} = -29.9077290516588
x4=89.5582285981617x_{4} = 89.5582285981617
x5=92.6980998895678x_{5} = -92.6980998895678
x6=42.4564583490925x_{6} = -42.4564583490925
x7=11.2094225756085x_{7} = 11.2094225756085
x8=17.4078418827344x_{8} = 17.4078418827344
x9=45.5989340221208x_{9} = 45.5989340221208
x10=73.8552539086152x_{10} = 73.8552539086152
x11=23.6397910260268x_{11} = -23.6397910260268
x12=67.5747321530437x_{12} = 67.5747321530437
x13=61.2947737477879x_{13} = 61.2947737477879
x14=0.608027193185354x_{14} = 0.608027193185354
x15=98.9799719065761x_{15} = -98.9799719065761
x16=33.0510440844576x_{16} = 33.0510440844576
x17=48.7340869568457x_{17} = -48.7340869568457
x18=95.8398856072694x_{18} = 95.8398856072694
x19=95.8390148309423x_{19} = -95.8390148309423
x20=58.1527005626759x_{20} = -58.1527005626759
x21=45.5950899112457x_{21} = -45.5950899112457
x22=42.4608910721214x_{22} = 42.4608910721214
x23=11.1465478761417x_{23} = -11.1465478761417
x24=33.0437325659006x_{24} = -33.0437325659006
x25=70.7133330445908x_{25} = -70.7133330445908
x26=70.7149322462641x_{26} = 70.7149322462641
x27=5.26235219013221x_{27} = 5.26235219013221
x28=58.1550647091465x_{28} = 58.1550647091465
x29=92.6990306602037x_{29} = 92.6990306602037
x30=64.434671931312x_{30} = 64.434671931312
x31=8.16755979017863x_{31} = 8.16755979017863
x32=23.6540450996506x_{32} = 23.6540450996506
x33=14.2595567375467x_{33} = -14.2595567375467
x34=14.2983787387079x_{34} = 14.2983787387079
x35=26.7840600984633x_{35} = 26.7840600984633
x36=55.0129368163814x_{36} = -55.0129368163814
x37=89.5572314141665x_{37} = -89.5572314141665
x38=83.2756543740143x_{38} = -83.2756543740143
x39=8.05041240154693x_{39} = -8.05041240154693
x40=2.77284537209289x_{40} = 2.77284537209289
x41=29.9166498508874x_{41} = 29.9166498508874
x42=64.4327459431059x_{42} = -64.4327459431059
x43=73.8537877665334x_{43} = -73.8537877665334
x44=39.3234425941623x_{44} = 39.3234425941623
x45=80.1349580232743x_{45} = -80.1349580232743
x46=39.3182751496891x_{46} = -39.3182751496891
x47=76.9956818956478x_{47} = 76.9956818956478
x48=20.5089729732221x_{48} = -20.5089729732221
x49=80.1362034081296x_{49} = 80.1362034081296
x50=36.1806502383284x_{50} = -36.1806502383284
x51=55.0155783175925x_{51} = 55.0155783175925
x52=51.8763564725917x_{52} = 51.8763564725917
x53=67.5729809293653x_{53} = -67.5729809293653
x54=48.7374522733982x_{54} = 48.7374522733982
x55=83.2768076209184x_{55} = 83.2768076209184
x56=61.2926454818648x_{56} = -61.2926454818648
x57=2.03133041409497x_{57} = -2.03133041409497
x58=20.5278813114349x_{58} = 20.5278813114349
x59=86.4174853166716x_{59} = 86.4174853166716
x60=36.1867511072071x_{60} = 36.1867511072071
x61=51.8733858256783x_{61} = -51.8733858256783
x62=4.9910276214054x_{62} = -4.9910276214054
x63=17.3815863752687x_{63} = -17.3815863752687
x64=98.9807883064615x_{64} = 98.9807883064615
x65=86.4164143510368x_{65} = -86.4164143510368

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[95.8398856072694,)\left[95.8398856072694, \infty\right)
Convex at the intervals
(,95.8390148309423]\left(-\infty, -95.8390148309423\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx((x2)cos(x)1)=,\lim_{x \to -\infty}\left(\left(x - 2\right) \cos{\left(x \right)} - 1\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limx((x2)cos(x)1)=,\lim_{x \to \infty}\left(\left(x - 2\right) \cos{\left(x \right)} - 1\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (x - 2)*cos(x) - 1, divided by x at x->+oo and x ->-oo
True

Let's take the limit
so,
inclined asymptote equation on the left:
y=xlimx((x2)cos(x)1x)y = x \lim_{x \to -\infty}\left(\frac{\left(x - 2\right) \cos{\left(x \right)} - 1}{x}\right)
True

Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx((x2)cos(x)1x)y = x \lim_{x \to \infty}\left(\frac{\left(x - 2\right) \cos{\left(x \right)} - 1}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
(x2)cos(x)1=(x2)cos(x)1\left(x - 2\right) \cos{\left(x \right)} - 1 = \left(- x - 2\right) \cos{\left(x \right)} - 1
- No
(x2)cos(x)1=(x2)cos(x)+1\left(x - 2\right) \cos{\left(x \right)} - 1 = - \left(- x - 2\right) \cos{\left(x \right)} + 1
- No
so, the function
not is
neither even, nor odd