Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 + \frac{\left(x - 3\right) \left(x + 4\right) \left(\left(2 x - 5\right) \left(\frac{1}{x - 5} + \frac{1}{x}\right) - 2 + \frac{2 x - 5}{x - 5} + \frac{2 x - 5}{x}\right)}{x \left(x - 5\right)} - \frac{2 \left(2 x - 5\right) \left(2 x + 1\right)}{x \left(x - 5\right)}}{x \left(x - 5\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \sqrt[3]{12} + 2 + \sqrt[3]{18}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$x_{2} = 5$$
$$\lim_{x \to 0^-}\left(\frac{2 + \frac{\left(x - 3\right) \left(x + 4\right) \left(\left(2 x - 5\right) \left(\frac{1}{x - 5} + \frac{1}{x}\right) - 2 + \frac{2 x - 5}{x - 5} + \frac{2 x - 5}{x}\right)}{x \left(x - 5\right)} - \frac{2 \left(2 x - 5\right) \left(2 x + 1\right)}{x \left(x - 5\right)}}{x \left(x - 5\right)}\right) = -\infty$$
$$\lim_{x \to 0^+}\left(\frac{2 + \frac{\left(x - 3\right) \left(x + 4\right) \left(\left(2 x - 5\right) \left(\frac{1}{x - 5} + \frac{1}{x}\right) - 2 + \frac{2 x - 5}{x - 5} + \frac{2 x - 5}{x}\right)}{x \left(x - 5\right)} - \frac{2 \left(2 x - 5\right) \left(2 x + 1\right)}{x \left(x - 5\right)}}{x \left(x - 5\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = 0$$
- is an inflection point
$$\lim_{x \to 5^-}\left(\frac{2 + \frac{\left(x - 3\right) \left(x + 4\right) \left(\left(2 x - 5\right) \left(\frac{1}{x - 5} + \frac{1}{x}\right) - 2 + \frac{2 x - 5}{x - 5} + \frac{2 x - 5}{x}\right)}{x \left(x - 5\right)} - \frac{2 \left(2 x - 5\right) \left(2 x + 1\right)}{x \left(x - 5\right)}}{x \left(x - 5\right)}\right) = -\infty$$
$$\lim_{x \to 5^+}\left(\frac{2 + \frac{\left(x - 3\right) \left(x + 4\right) \left(\left(2 x - 5\right) \left(\frac{1}{x - 5} + \frac{1}{x}\right) - 2 + \frac{2 x - 5}{x - 5} + \frac{2 x - 5}{x}\right)}{x \left(x - 5\right)} - \frac{2 \left(2 x - 5\right) \left(2 x + 1\right)}{x \left(x - 5\right)}}{x \left(x - 5\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 5$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \sqrt[3]{12} + 2 + \sqrt[3]{18}\right]$$
Convex at the intervals
$$\left[- \sqrt[3]{12} + 2 + \sqrt[3]{18}, \infty\right)$$