Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$x - \sqrt{x^{2} - x} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = 1.62504262805869 \cdot 10^{28}$$
$$x_{2} = 1.37955649810789 \cdot 10^{30}$$
$$x_{3} = 1.59623125568211 \cdot 10^{31}$$
$$x_{4} = 9.06980847762811 \cdot 10^{31}$$
$$x_{5} = 1.7164221864142 \cdot 10^{32}$$
$$x_{6} = 5.58897734788599 \cdot 10^{32}$$
$$x_{7} = 1.09439022896545 \cdot 10^{31}$$
$$x_{8} = 2.304591345438 \cdot 10^{31}$$
$$x_{9} = 7.6321877357881 \cdot 10^{30}$$
$$x_{10} = 9.7077991997921 \cdot 10^{32}$$
$$x_{11} = 3.77554352063195 \cdot 10^{28}$$
$$x_{12} = 2.31825812568162 \cdot 10^{32}$$
$$x_{13} = 2.05928325659106 \cdot 10^{28}$$
$$x_{14} = 2.76146021831672 \cdot 10^{27}$$
$$x_{15} = 1.25369341817483 \cdot 10^{32}$$
$$x_{16} = 1.99641097694614 \cdot 10^{29}$$
$$x_{17} = 3.32735312594339 \cdot 10^{29}$$
$$x_{18} = 2.14529294218284 \cdot 10^{30}$$
$$x_{19} = 7.53662826956762 \cdot 10^{32}$$
$$x_{20} = 1.09037430017554 \cdot 10^{28}$$
$$x_{21} = 8.73637380888125 \cdot 10^{29}$$
$$x_{22} = 6.55211009888955 \cdot 10^{31}$$
$$x_{23} = 1.31066551931379 \cdot 10^{27}$$
$$x_{24} = 7.41847063311719 \cdot 10^{30}$$
$$x_{25} = 1.2977405244039 \cdot 10^{33}$$
$$x_{26} = 4.97172436641002 \cdot 10^{30}$$
$$x_{27} = 1.17301676415335 \cdot 10^{29}$$
$$x_{28} = 1.63459608816256 \cdot 10^{33}$$
$$x_{29} = 4.18832868866255 \cdot 10^{32}$$
$$x_{30} = 5.58765904997679 \cdot 10^{27}$$
$$x_{31} = 8.7492894917681 \cdot 10^{32}$$
$$x_{32} = 5.44000241662644 \cdot 10^{29}$$
$$x_{33} = 0$$
$$x_{34} = 4.66226651004785 \cdot 10^{31}$$
$$x_{35} = 6.73762407499375 \cdot 10^{28}$$
$$x_{36} = 5.63878719726942 \cdot 10^{34}$$
$$x_{37} = 3.29670571199155 \cdot 10^{31}$$