Mister Exam

Other calculators

Graphing y = x-sqrt(x^2-x)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
              ________
             /  2     
f(x) = x - \/  x  - x 
f(x)=xx2xf{\left(x \right)} = x - \sqrt{x^{2} - x}
f = x - sqrt(x^2 - x)
The graph of the function
02468-8-6-4-2-1010-2525
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
xx2x=0x - \sqrt{x^{2} - x} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=1.625042628058691028x_{1} = 1.62504262805869 \cdot 10^{28}
x2=1.379556498107891030x_{2} = 1.37955649810789 \cdot 10^{30}
x3=1.596231255682111031x_{3} = 1.59623125568211 \cdot 10^{31}
x4=9.069808477628111031x_{4} = 9.06980847762811 \cdot 10^{31}
x5=1.71642218641421032x_{5} = 1.7164221864142 \cdot 10^{32}
x6=5.588977347885991032x_{6} = 5.58897734788599 \cdot 10^{32}
x7=1.094390228965451031x_{7} = 1.09439022896545 \cdot 10^{31}
x8=2.3045913454381031x_{8} = 2.304591345438 \cdot 10^{31}
x9=7.63218773578811030x_{9} = 7.6321877357881 \cdot 10^{30}
x10=9.70779919979211032x_{10} = 9.7077991997921 \cdot 10^{32}
x11=3.775543520631951028x_{11} = 3.77554352063195 \cdot 10^{28}
x12=2.318258125681621032x_{12} = 2.31825812568162 \cdot 10^{32}
x13=2.059283256591061028x_{13} = 2.05928325659106 \cdot 10^{28}
x14=2.761460218316721027x_{14} = 2.76146021831672 \cdot 10^{27}
x15=1.253693418174831032x_{15} = 1.25369341817483 \cdot 10^{32}
x16=1.996410976946141029x_{16} = 1.99641097694614 \cdot 10^{29}
x17=3.327353125943391029x_{17} = 3.32735312594339 \cdot 10^{29}
x18=2.145292942182841030x_{18} = 2.14529294218284 \cdot 10^{30}
x19=7.536628269567621032x_{19} = 7.53662826956762 \cdot 10^{32}
x20=1.090374300175541028x_{20} = 1.09037430017554 \cdot 10^{28}
x21=8.736373808881251029x_{21} = 8.73637380888125 \cdot 10^{29}
x22=6.552110098889551031x_{22} = 6.55211009888955 \cdot 10^{31}
x23=1.310665519313791027x_{23} = 1.31066551931379 \cdot 10^{27}
x24=7.418470633117191030x_{24} = 7.41847063311719 \cdot 10^{30}
x25=1.29774052440391033x_{25} = 1.2977405244039 \cdot 10^{33}
x26=4.971724366410021030x_{26} = 4.97172436641002 \cdot 10^{30}
x27=1.173016764153351029x_{27} = 1.17301676415335 \cdot 10^{29}
x28=1.634596088162561033x_{28} = 1.63459608816256 \cdot 10^{33}
x29=4.188328688662551032x_{29} = 4.18832868866255 \cdot 10^{32}
x30=5.587659049976791027x_{30} = 5.58765904997679 \cdot 10^{27}
x31=8.74928949176811032x_{31} = 8.7492894917681 \cdot 10^{32}
x32=5.440002416626441029x_{32} = 5.44000241662644 \cdot 10^{29}
x33=0x_{33} = 0
x34=4.662266510047851031x_{34} = 4.66226651004785 \cdot 10^{31}
x35=6.737624074993751028x_{35} = 6.73762407499375 \cdot 10^{28}
x36=5.638787197269421034x_{36} = 5.63878719726942 \cdot 10^{34}
x37=3.296705711991551031x_{37} = 3.29670571199155 \cdot 10^{31}
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to x - sqrt(x^2 - x).
020- \sqrt{0^{2} - 0}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
x12x2x+1=0- \frac{x - \frac{1}{2}}{\sqrt{x^{2} - x}} + 1 = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
1+(2x1)24x(x1)x(x1)=0\frac{-1 + \frac{\left(2 x - 1\right)^{2}}{4 x \left(x - 1\right)}}{\sqrt{x \left(x - 1\right)}} = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(xx2x)=\lim_{x \to -\infty}\left(x - \sqrt{x^{2} - x}\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(xx2x)=12\lim_{x \to \infty}\left(x - \sqrt{x^{2} - x}\right) = \frac{1}{2}
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=12y = \frac{1}{2}
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x - sqrt(x^2 - x), divided by x at x->+oo and x ->-oo
limx(xx2xx)=2\lim_{x \to -\infty}\left(\frac{x - \sqrt{x^{2} - x}}{x}\right) = 2
Let's take the limit
so,
inclined asymptote equation on the left:
y=2xy = 2 x
limx(xx2xx)=0\lim_{x \to \infty}\left(\frac{x - \sqrt{x^{2} - x}}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
xx2x=xx2+xx - \sqrt{x^{2} - x} = - x - \sqrt{x^{2} + x}
- No
xx2x=x+x2+xx - \sqrt{x^{2} - x} = x + \sqrt{x^{2} + x}
- No
so, the function
not is
neither even, nor odd