The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: x−x2−x=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to x - sqrt(x^2 - x). −02−0 The result: f(0)=0 The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative −x2−xx−21+1=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative x(x−1)−1+4x(x−1)(2x−1)2=0 Solve this equation Solutions are not found, maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim(x−x2−x)=−∞ Let's take the limit so, horizontal asymptote on the left doesn’t exist x→∞lim(x−x2−x)=21 Let's take the limit so, equation of the horizontal asymptote on the right: y=21
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x - sqrt(x^2 - x), divided by x at x->+oo and x ->-oo x→−∞lim(xx−x2−x)=2 Let's take the limit so, inclined asymptote equation on the left: y=2x x→∞lim(xx−x2−x)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: x−x2−x=−x−x2+x - No x−x2−x=x+x2+x - No so, the function not is neither even, nor odd