Let's find the inflection points, we'll need to solve the equation for this
dx2d2f(x)=0(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
dx2d2f(x)=the second derivativex−(x−1)cos(x)−2sin(x)+x(x−1)sin(x)+x(x−1)sin(x)−cos(x)−xcos(x)+x22(x−1)cos(x)=0Solve this equationThe roots of this equation
x1=29.8474528425252x2=−14.1278030885708x3=4.81830169068692x4=32.9886180185199x5=−80.11030486752x6=−865.508773397218x7=−58.1188820004811x8=76.9693620488425x9=54.9785453606757x10=64.4031391874027x11=−76.9686867419196x12=73.8277993317264x13=61.2615984927811x14=−32.9849386326173x15=−230.907022689846x16=−98.9599664047991x17=67.5446870137729x18=−92.6767529095687x19=83.252497386865x20=−29.8429571923873x21=−17.2724203975121x22=17.2858609706125x23=−39.2686433436629x24=14.1479101581108x25=−70.6854400018162x26=23.565705260759x27=80.1109282396762x28=39.2712388323218x29=−42.4104144616263x30=98.9603748966698x31=−64.4021745660819x32=86.394069065896x33=2.1151044019306x34=−7.82491949822255x35=58.1200665270198x36=70.6862407240204x37=−67.543810056952x38=48.6955472336803x39=−23.5584875548962x40=95.8187960668258x41=−86.3935330805343x42=45.5540788615421x43=−10.9803508603381x44=51.8370377167161x45=−45.5521503065062x46=11.0136769372905x47=−36.1268243364932x48=−95.8183603465263x49=20.4253916500379x50=−48.6938595973699x51=−89.5351438981654x52=−61.2605323722968x53=92.6772186743975x54=−51.8355485164882x55=42.4126394726376x56=−4.63467435481449x57=1198.517598738x58=−73.8270653183329x59=−26.7008332529908x60=−20.4157768960442x61=36.1298911934334x62=26.7064504389974x63=−54.9772215461932x64=89.5356429258046x65=7.89057914345282x66=−83.2519201806158You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
x1=0x→0−lim(x−(x−1)cos(x)−2sin(x)+x(x−1)sin(x)+x(x−1)sin(x)−cos(x)−xcos(x)+x22(x−1)cos(x))=∞x→0+lim(x−(x−1)cos(x)−2sin(x)+x(x−1)sin(x)+x(x−1)sin(x)−cos(x)−xcos(x)+x22(x−1)cos(x))=−∞- the limits are not equal, so
x1=0- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[95.8187960668258,∞)Convex at the intervals
(−∞,−865.508773397218]