Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(x - 1\right) e^{x} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 1$$
Numerical solution$$x_{1} = -109.087371742331$$
$$x_{2} = -99.1120495157731$$
$$x_{3} = -77.1931311289629$$
$$x_{4} = -53.3821676071309$$
$$x_{5} = -95.1235868161767$$
$$x_{6} = -45.5083552648416$$
$$x_{7} = -111.08303446753$$
$$x_{8} = -67.2515753571383$$
$$x_{9} = -51.4086841814429$$
$$x_{10} = -115.074865014488$$
$$x_{11} = -91.1362942896831$$
$$x_{12} = -59.316486753355$$
$$x_{13} = -47.4711655449634$$
$$x_{14} = -113.078868899778$$
$$x_{15} = -101.106670133692$$
$$x_{16} = -69.2382302560517$$
$$x_{17} = -49.4381699084522$$
$$x_{18} = -97.1176822742156$$
$$x_{19} = -105.096605847552$$
$$x_{20} = -61.2982393476586$$
$$x_{21} = -121.063734292694$$
$$x_{22} = 1$$
$$x_{23} = -71.2257989645248$$
$$x_{24} = -83.1660166222937$$
$$x_{25} = -93.1297833837852$$
$$x_{26} = -63.2814467335924$$
$$x_{27} = -73.2141900449367$$
$$x_{28} = -33.8971886855811$$
$$x_{29} = -41.5991101904548$$
$$x_{30} = -65.2659399232894$$
$$x_{31} = -87.1503604017549$$
$$x_{32} = -81.1745282419576$$
$$x_{33} = -75.2033239479075$$
$$x_{34} = -35.8006485741225$$
$$x_{35} = -89.1431441899768$$
$$x_{36} = -117.071013554438$$
$$x_{37} = -79.1835505142898$$
$$x_{38} = -32.0182140925185$$
$$x_{39} = -37.7215440170094$$
$$x_{40} = -119.06730595755$$
$$x_{41} = -85.157973273941$$
$$x_{42} = -55.3581866464466$$
$$x_{43} = -107.091891597578$$
$$x_{44} = -39.6553752443623$$
$$x_{45} = -43.550618994199$$
$$x_{46} = -103.101527351786$$
$$x_{47} = -57.336389337426$$