Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{- x} \left(x - 1\right) = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 1$$
Numerical solution$$x_{1} = 40.020216210141$$
$$x_{2} = 97.432316424891$$
$$x_{3} = 95.4384664647568$$
$$x_{4} = 101.420862702525$$
$$x_{5} = 49.7754697845928$$
$$x_{6} = 65.5886304003902$$
$$x_{7} = 41.9557499214057$$
$$x_{8} = 32.4578471962376$$
$$x_{9} = 55.6879649775293$$
$$x_{10} = 91.4517230466241$$
$$x_{11} = 99.4264551520843$$
$$x_{12} = 75.5221246603965$$
$$x_{13} = 113.392040334004$$
$$x_{14} = 119.380091923383$$
$$x_{15} = 71.545912319012$$
$$x_{16} = 59.642856145511$$
$$x_{17} = 67.5733090128955$$
$$x_{18} = 34.3071598061728$$
$$x_{19} = 51.7430576092052$$
$$x_{20} = 87.466430197318$$
$$x_{21} = 38.0970717014418$$
$$x_{22} = 117.383920620405$$
$$x_{23} = 63.6052138551392$$
$$x_{24} = 53.714063380457$$
$$x_{25} = 77.51136695866$$
$$x_{26} = 107.405524706139$$
$$x_{27} = 121.376405823956$$
$$x_{28} = 83.4828412467504$$
$$x_{29} = 89.4588807455217$$
$$x_{30} = 105.410413305772$$
$$x_{31} = 1$$
$$x_{32} = 57.664342946604$$
$$x_{33} = 73.5336138177003$$
$$x_{34} = 61.6232240789579$$
$$x_{35} = 115.387900375534$$
$$x_{36} = 103.415520933891$$
$$x_{37} = 93.444927247289$$
$$x_{38} = 111.396350396671$$
$$x_{39} = 81.4917816149558$$
$$x_{40} = 109.400841299949$$
$$x_{41} = 69.5591096232555$$
$$x_{42} = 36.1905363866884$$
$$x_{43} = 79.5012725708786$$
$$x_{44} = 85.4744046501982$$
$$x_{45} = 45.853370487631$$
$$x_{46} = 47.8119589630405$$
$$x_{47} = 43.9008089996782$$
$$x_{48} = 32.2046743865559$$