Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$2 \left(\left(1 - \frac{1}{x^{2}}\right) \left(1 + \frac{1}{x^{2}}\right) + \frac{x - \frac{1}{x}}{x^{3}} - \frac{x + \frac{1}{x}}{x^{3}}\right) = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \sqrt[4]{3}$$
$$x_{2} = \sqrt[4]{3}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(2 \left(\left(1 - \frac{1}{x^{2}}\right) \left(1 + \frac{1}{x^{2}}\right) + \frac{x - \frac{1}{x}}{x^{3}} - \frac{x + \frac{1}{x}}{x^{3}}\right)\right) = -\infty$$
$$\lim_{x \to 0^+}\left(2 \left(\left(1 - \frac{1}{x^{2}}\right) \left(1 + \frac{1}{x^{2}}\right) + \frac{x - \frac{1}{x}}{x^{3}} - \frac{x + \frac{1}{x}}{x^{3}}\right)\right) = -\infty$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \sqrt[4]{3}\right] \cup \left[\sqrt[4]{3}, \infty\right)$$
Convex at the intervals
$$\left[- \sqrt[4]{3}, \sqrt[4]{3}\right]$$