The points at which the function is not precisely defined: x1=−3 x2=2
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: (x−2)(x+3)x=0 Solve this equation The points of intersection with the axis X:
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to x/(((x - 2)*(x + 3))). (−1)2⋅30 The result: f(0)=0 The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative (x−2)2(x+3)2x(−2x−1)+(x−2)(x+3)1=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative (x−2)2(x+3)2x((2x+1)(x+31+x−21)−2+x+32x+1+x−22x+1)−4x−2=0 Solve this equation The roots of this equation x1=−318+312 You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function: Points where there is an indetermination: x1=−3 x2=2
x→−3−lim((x−2)2(x+3)2x((2x+1)(x+31+x−21)−2+x+32x+1+x−22x+1)−4x−2)=−∞ x→−3+lim((x−2)2(x+3)2x((2x+1)(x+31+x−21)−2+x+32x+1+x−22x+1)−4x−2)=∞ - the limits are not equal, so x1=−3 - is an inflection point x→2−lim((x−2)2(x+3)2x((2x+1)(x+31+x−21)−2+x+32x+1+x−22x+1)−4x−2)=−∞ x→2+lim((x−2)2(x+3)2x((2x+1)(x+31+x−21)−2+x+32x+1+x−22x+1)−4x−2)=∞ - the limits are not equal, so x2=2 - is an inflection point
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals (−∞,−318+312] Convex at the intervals [−318+312,∞)
Vertical asymptotes
Have: x1=−3 x2=2
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞lim((x−2)(x+3)x)=0 Let's take the limit so, equation of the horizontal asymptote on the left: y=0 x→∞lim((x−2)(x+3)x)=0 Let's take the limit so, equation of the horizontal asymptote on the right: y=0
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of x/(((x - 2)*(x + 3))), divided by x at x->+oo and x ->-oo x→−∞lim((x−2)(x+3)1)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim((x−2)(x+3)1)=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: (x−2)(x+3)x=−(3−x)(−x−2)x - No (x−2)(x+3)x=(3−x)(−x−2)x - No so, the function not is neither even, nor odd