Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{x \left(\left(2 x + 1\right) \left(\frac{1}{x + 3} + \frac{1}{x - 2}\right) - 2 + \frac{2 x + 1}{x + 3} + \frac{2 x + 1}{x - 2}\right) - 4 x - 2}{\left(x - 2\right)^{2} \left(x + 3\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \sqrt[3]{18} + \sqrt[3]{12}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -3$$
$$x_{2} = 2$$
$$\lim_{x \to -3^-}\left(\frac{x \left(\left(2 x + 1\right) \left(\frac{1}{x + 3} + \frac{1}{x - 2}\right) - 2 + \frac{2 x + 1}{x + 3} + \frac{2 x + 1}{x - 2}\right) - 4 x - 2}{\left(x - 2\right)^{2} \left(x + 3\right)^{2}}\right) = -\infty$$
$$\lim_{x \to -3^+}\left(\frac{x \left(\left(2 x + 1\right) \left(\frac{1}{x + 3} + \frac{1}{x - 2}\right) - 2 + \frac{2 x + 1}{x + 3} + \frac{2 x + 1}{x - 2}\right) - 4 x - 2}{\left(x - 2\right)^{2} \left(x + 3\right)^{2}}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = -3$$
- is an inflection point
$$\lim_{x \to 2^-}\left(\frac{x \left(\left(2 x + 1\right) \left(\frac{1}{x + 3} + \frac{1}{x - 2}\right) - 2 + \frac{2 x + 1}{x + 3} + \frac{2 x + 1}{x - 2}\right) - 4 x - 2}{\left(x - 2\right)^{2} \left(x + 3\right)^{2}}\right) = -\infty$$
$$\lim_{x \to 2^+}\left(\frac{x \left(\left(2 x + 1\right) \left(\frac{1}{x + 3} + \frac{1}{x - 2}\right) - 2 + \frac{2 x + 1}{x + 3} + \frac{2 x + 1}{x - 2}\right) - 4 x - 2}{\left(x - 2\right)^{2} \left(x + 3\right)^{2}}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 2$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \sqrt[3]{18} + \sqrt[3]{12}\right]$$
Convex at the intervals
$$\left[- \sqrt[3]{18} + \sqrt[3]{12}, \infty\right)$$