Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$x e^{- x} - 2 e^{- x} - \frac{1}{x^{2} \log{\left(x \right)}^{2}} - \frac{2}{x^{2} \log{\left(x \right)}^{3}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 92052.0669548957$$
$$x_{2} = 100641.037473986$$
$$x_{3} = 113656.038545734$$
$$x_{4} = 135655.081131858$$
$$x_{5} = 198861.780064415$$
$$x_{6} = 87786.2973905852$$
$$x_{7} = 109301.131390774$$
$$x_{8} = 189709.551623869$$
$$x_{9} = 162484.725665548$$
$$x_{10} = 180594.646831991$$
$$x_{11} = 140096.184290192$$
$$x_{12} = 185147.317387735$$
$$x_{13} = 126812.726236405$$
$$x_{14} = 194281.114117316$$
$$x_{15} = 122412.404500837$$
$$x_{16} = 166996.547043092$$
$$x_{17} = 96337.2699685649$$
$$x_{18} = 203451.334594106$$
$$x_{19} = 104962.570348548$$
$$x_{20} = 118026.659073151$$
$$x_{21} = 153494.18780763$$
$$x_{22} = 157983.833341669$$
$$x_{23} = 131227.111734044$$
$$x_{24} = 149016.124526383$$
$$x_{25} = 144549.998173307$$
$$x_{26} = 171518.996126846$$
$$x_{27} = 176051.78674985$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 1$$
$$\lim_{x \to 1^-}\left(x e^{- x} - 2 e^{- x} - \frac{1}{x^{2} \log{\left(x \right)}^{2}} - \frac{2}{x^{2} \log{\left(x \right)}^{3}}\right) = \infty$$
$$\lim_{x \to 1^+}\left(x e^{- x} - 2 e^{- x} - \frac{1}{x^{2} \log{\left(x \right)}^{2}} - \frac{2}{x^{2} \log{\left(x \right)}^{3}}\right) = -\infty$$
- the limits are not equal, so
$$x_{1} = 1$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis