Mister Exam

Graphing y = x.diff(x)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       /x  for 0 = 1
       |            
f(x) = <1  for 1 = 1
       |            
       \0  otherwise
$$f{\left(x \right)} = \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}$$
Eq(f, Piecewise((x, 0 = 1), (1, 1 = 1), (0, True)))
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to Piecewise((x, 0 = 1), (1, 1 = 1), (0, True)).
$$\begin{cases} 0 & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}$$
The result:
$$f{\left(0 \right)} = 1$$
The point:
(0, 1)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\begin{cases} 1 & \text{for}\: 0 = 1 \\0 & \text{otherwise} \end{cases} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$0 = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = 1$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 1$$
$$\lim_{x \to \infty} \begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = 1$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 1$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of Piecewise((x, 0 = 1), (1, 1 = 1), (0, True)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = \begin{cases} - x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}$$
- No
$$\begin{cases} x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases} = - \begin{cases} - x & \text{for}\: 0 = 1 \\1 & \text{for}\: 1 = 1 \\0 & \text{otherwise} \end{cases}$$
- No
so, the function
not is
neither even, nor odd