Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- 3^{x} \log{\left(3 \right)}^{2} + 2 = 0$$
Solve this equationThe roots of this equation
$$x_{1} = \frac{- 2 \log{\left(\log{\left(3 \right)} \right)} + \log{\left(2 \right)}}{\log{\left(3 \right)}}$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, \frac{- 2 \log{\left(\log{\left(3 \right)} \right)} + \log{\left(2 \right)}}{\log{\left(3 \right)}}\right]$$
Convex at the intervals
$$\left[\frac{- 2 \log{\left(\log{\left(3 \right)} \right)} + \log{\left(2 \right)}}{\log{\left(3 \right)}}, \infty\right)$$