Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$2^{x - 1} - 3^{x} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{\log{\left(2 \right)}}{- \log{\left(3 \right)} + \log{\left(2 \right)}}$$
Numerical solution$$x_{1} = -92.1767600931808$$
$$x_{2} = -42.2082724146415$$
$$x_{3} = -118.176760093132$$
$$x_{4} = -94.1767600931537$$
$$x_{5} = -1.70951129135145$$
$$x_{6} = -72.1767602554905$$
$$x_{7} = -44.1906710173487$$
$$x_{8} = -108.176760093132$$
$$x_{9} = -126.176760093132$$
$$x_{10} = -46.1829243162739$$
$$x_{11} = -104.176760093132$$
$$x_{12} = -76.1767601252028$$
$$x_{13} = -52.1773000889449$$
$$x_{14} = -40.2487760888934$$
$$x_{15} = -50.1779753996647$$
$$x_{16} = -56.1768667411757$$
$$x_{17} = -114.176760093132$$
$$x_{18} = -124.176760093132$$
$$x_{19} = -80.176760099467$$
$$x_{20} = -58.1768074911812$$
$$x_{21} = -116.176760093132$$
$$x_{22} = -70.1767604584386$$
$$x_{23} = -60.1767811587181$$
$$x_{24} = -128.176760093132$$
$$x_{25} = -120.176760093132$$
$$x_{26} = -96.1767600931417$$
$$x_{27} = -122.176760093132$$
$$x_{28} = -106.176760093132$$
$$x_{29} = -66.1767619424976$$
$$x_{30} = -1.70951129135145$$
$$x_{31} = -88.1767600933792$$
$$x_{32} = -86.1767600936882$$
$$x_{33} = -64.1767642542084$$
$$x_{34} = -110.176760093132$$
$$x_{35} = -102.176760093133$$
$$x_{36} = -78.1767601073857$$
$$x_{37} = -130.176760093132$$
$$x_{38} = -100.176760093134$$
$$x_{39} = -62.1767694555725$$
$$x_{40} = -90.1767600932419$$
$$x_{41} = -54.1770000635484$$
$$x_{42} = -74.1767601652913$$
$$x_{43} = -82.1767600959476$$
$$x_{44} = -48.1794961343389$$
$$x_{45} = -68.176760915072$$
$$x_{46} = -98.1767600931363$$
$$x_{47} = -112.176760093132$$
$$x_{48} = -84.1767600943834$$